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Abstract

Wavefront estimation from shearing interferometry
measurements is considered in detail. Two analyses are
presented, which involve the estimation of constant phase
from single detector and detector array measurements. The
single detector analysis is carried out in a discrete mode
to obtain algorithms based on photon counting as the alter-
nate means for use under low light level conditions. The
method used follows the Maximum A Posteriori and Maximum
Likelihood estimation theories. This is done for measure-
ments made in both white Gaussian noise and Poisson shot
noise limited conditions. The results so obtained are
trigonometric relationships between the phases and the
photon counts. The theoretical performance results show a
strong signal-to-noise ratio dependence. Simulation results
show that signal-to-noise ratios of 17 dB or better are
needed to produce adequate estimates. Both theory and sim-
ulation show that an estimate improvement is obtained as
more photon counts are performed, and in the limiting case,
the ideal form is a current measurement. In this sense,
although photon counting seems to be inferior to current
measuring, the error variance is only 1.65 dB larger in the
worst case, where three photon counts are performed.

The ML estimator was found to be computationally sim-~
pler than the MAP estimator, and with similar performance for

SNR's in the order of 10 dB and higher.

xXiv
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An extension of the single detector analysis is made,
using only the Gaussian noise assumption, to derive an
algorithm that jointly estimates the phase distribution
over an optical wavefront. The procedure is based on a
parametric dependence between the measurements performed by
adjacent detectors, and on the a priori knowledge available
through a covariance matrix. An algorithm for processing
continuous waveform measurements is developed, but no com-
puter simulation is included due to difficulties encount-

ered in solving the feedback system equations.

XV




PHASE ESTIMATION TECHNIQUES FOR ACTIVE
OPTICS SYSTEMS USED IN REAL-TIME

WAVEFRONT RECONSTRUCTION

I Introduction

Reconstruction of a wavefront in real time is of par~
ticular interest to the Air Force because of the need to
corpensate for atmospheric disturbances and target varia-
tions that adversely affect laser weapons systems., Wave-
front correction systems of diverse complexity are employed
to maximize the irradiance of the laser on a target. The
laser beam is continuously shaped in real time by means of
mirrors to reconstruct the detected wavefront of the tar-
get's radiation. Actually, the complax conjugate field is
reconstructed to propagate back to the target a wavefront
with the same characteristics but in complementary form.
Prior to such reconstruction, the phase distribution of the
wavefront must be estimated over the region of space
enclosed by the aperture of the receiving system. The most
common method used for measuring the phasefront is shearing
interferometry. The search for improved phase estimation
techniques using the outputs of shearing interferometers
constitutes the basis of this thesis. The shearing inter-

ferometer will be discussed in Chapter II.

System Description

Active optics systems have been widely described in

the literature and only a brief description is necessary
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for the purpose of this paper. Detailed systems descrip-
tions are given by Hardy (Ref 3), Hudgin (Ref 5), Rimmer
(Ref 10) and Martoni (Ref 7:1) among many. The system
operation basically consists of wavefront detection, phase-
front estimation, and beam control. Figure 1 shows a sim-
plified block diagram of a typical system. In such a sys-
tem, a reflecting telescope is used both as entrance aper-
ture for the optical radiation from the target, and as exit
aperture for the laser beam. Both input and output wave-
fronts travel the same path in opposite directions. Part
of the incoming field is deflected off onto a phasefront
sensor usually composed of two shearing interferometers.
The output of this sensor is translated into control com-
mands which actuate deformable mirrors off which the laser
beam is reflected onto the target, Since this is done in
real time, the atmosphere induces on the laser wavefront
the reverse distortion effects induced on the detected
field. The radiation reaching the target has, therefore,

been adjusted for maximum irradiance.

Problem Statement

There is an issue expressed by the Weapons Laboratory
that when the target radiance is low, the detectable field
is not strong enough to perform phasefront estimation base
on con'inuous signal measurements. A phase estimation tech-
nique was proposed by J. C. Wyant in 1975 (Ref 16:2624),

based on detector processing of photon counts observed
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Fig 1. A Typical Real-Time Wavefront Correction System
(Adapted f£rom Ref 7)

during short time intervals. Although his assumption is
shot noise limited detection, his results are free'from
noise considerations, and the simplicity of the resulting
algorithm motivates one to investigate more deeply into his
technique. The overall wavefront is obtained from a mapping
of independent phase estimates over the aperture of the sys-
tem.

The purpose of this paper is to explore the photon
counting technique from a statistical point of view and to
examine in detail the effects of receiver and signal shot
noises in order to determine the extent to which this pro-
cedure can be applied efficiently. Joint processing of

multiple detectors has also been considered within the

3
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scope of this work in an attempt to obtain improved results
over linear mappings currently used tc estimate the wave-

front over the region of interest.

Approach

The basic approach to the problem is based on countable
observables obtained by decomposing the continuous output
of a detector into discrete components. The problem
reduces to classical parameter estimation theory and will
be carried out using the concepts of Maximum A Posteriori
and Maximum Likelihood estimation theories. To fulfill the
purpose of this approach, it is assumed that specially
designed detectors are available, based on the promising
future of charge-coupled devices (CCD) (Ref 13:Chapter 12),
which are capable of integrating the detected field signal
over short periods of time and dumping the contents into
the registers of a computer. Such a receiver can be repre-
sented mathematically with a time correlator to be described

later in Chapter III.

Scope and Assumptions

In this thesis, the wavefront process will be con-
sidered slow varying in time such that a stepwise approxi-
mation to the actuali variation can be performed. The phase
in each step of length T will be constant and the analysis
of the problem will be limited to a single observation
interval (0,T). An extension to sequential estimation over

successive intervals can then be performed using Gauss-
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Markov parameter models. That will not be considered in
this thesis. Constant phase is, therefore, the basic
assumption of the forthcoming developments. The disturb-
ance induced by the atmosphere will be modeled as an addi-
tive noise phase to the target wavefront. There is no need
to distinguish between the target and noise induced phases
because the reverse disturbance effects produced on the
laser wavefront by the atmosphere cancel the noise compon-
ent. Therefore, they will be lumped together into a single
parameter 6, where 6 is a random variable. The probabilis-
tic descriptions of 6 will be fitted to the ones given by
Gaussian and uniform probability density functions in the
interval (-m,m). Other than for ease in estimator deriva-
tion, the Gaussian model is chosen considering that for
slow varying wavefronts, the phase variations are more
likely to be concentrated about the zero value and less
likely as the phase value increases. On the other hand,
because the sensor output is a sinusoidal variation, the
uniform density is also a logical choice since the phases
are equally likely in the interval (-w,m).

Estimation of 6 will be analyzed in the presence of
noise from two points of view: predominant detector noise
and predominant signal shot noise processes. Chapter IV is
devoted to the analysis of the detector limited case, where
the noise is modeled as a continuous white Gaussian random
process. Chapter V is devoted to the analysis in signal

induced noise, where the noise is modeled as a discrete




Poisson count process. A mixed mode ;f continuous and dis-
crete processes will not be considered in this paper, but
deserves future attention. An extension of the Gaussian
noise analysis is performed in Chapter VI where the same
concepts are applied to joint processing of two plane
detector arrays. Finally, Chapter VII makes a summary of
results and conclusions, and presents suggestions for fur-

ther study.




ITI The Shearing Interferometer

The wavefront sensor of interest in this thesis con-
sists of two ac heterodyne, lateral shearing interferometers.
This sensor configuration is depicted in Figure 2. The
field entering the system is beamsplit into two channels.
Each channel has a shearing interferometer composed of two
confocal lenses which constitute a Fourier transform pair.
The field at the common focal point is the Fourier trans-
form of the received field. The Fourier transform field is
sampled with a radial grating displaced off the optic axis
and rotating with velocity v and period 1. An expanded
view is shown in Figure 3.

If the aperture is located at the front focal plane of
lense Lys the field observed at the back focal plane of
lense L2 is sheared into a number of components laterally
displaced from each other by an equal distance Msd, known
as the shear distance, where Sq is a parameter of the inter-
ferometer determined by v, and M is a magnification factor
determined by the ratio of the lenses in the system. The
field components so displaced interfere with each other, and
the modulated output is observed in the form of an inter-
ferogram spread over a detector array. It is this slowly
but continuously changing interferogram that contains the

wavefront phase information being sought.

== S




Rotating Grating
Beam Splitter |

1
+
I
|

”~
\ | I
N\ | X ——
- t > e
I t l Y-Sh
npu - ' -Shear
Field Y-Channel Interferogram
Y \
1
- ——’-———{
. i
Mirror ]
!
> ——
! X~Shear
X~-Channel Interferogram

Fig 2. A Two Shearing-Interferometer Sensor Used with
Wavefront Correction Systems (Adapted from Ref 3)

Output Field

The sheared field at the focal plane takes on slightly
different forms for broadband (white light) and monochro-
matic fields. However, the same equation is applicable in
both cases when the shear is small. Thus, for spatially
coherent, white light aperture fields when the shear dis-
tance Msd is small, the detector field intensity is given by

(Ref 6:58,61)

Id(;d,t) = (% + %)MZIA(fa)]z

2 .2 - 2 - . —
+ T M [A(ra)] cosg(ra,t)51n(ut + e(ra,t))

for 0

A
-+
IA

TI (2"1)
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Fig 3. Expanded View of the X-Channel Interferometer
(Adapted from Ref 6)

where _ -
_ ¢ (r_-Ms )+d (r_+Ms )
e, p = —2—St 2 At e ) (2-2)
and _ _ _ _
_ ¢ (r_-Ms )-¢ (r_+Ms )
e(ra't) - a d,t , a d,t (2-3)

are phase functions in terms of the phases at locations iMsd
from ;a' The term A(?a) is the amplitude of the aperture
field at location ;a = Mfd shown in Figure 3. For slow
varying fields over the aperture and constant intensity,

Eq. (2-1) can be simplified to (Ref 7:10,6:59)

2.2
- _ {1 2 2.2 2M°A . —
Id(rd,t) = (E + F)M AT + — sin{wt + O(ralt)) (2-1)




The frequency

w = = (2-5)

is the fundamental modulation frequency of the detector
field (Ref 6:41). Double frequency and higher order fre-
quency terms have been dropped from Egs. (2-1) and (2-4),

anticipating subsequent signal processor filtering.

Detector Signal

The output r(t) of a detector at location fﬁ in the
1
back focal plane is computed from the received field intensi-

ty Id(rd,t'e(ra t)) and the detector noise as fo .lows:

4

r{t) = s(t,8(t)) + n(t), at fa ¢ Aperture, (2-6)

where (Ref 2:54-55)

= n = = =
s(t,0(£)) = hfofA 14(Fy, 4 0 0, ) aT,
d

for e(rd’t) constant over Ay, (2-7)

is the signal current. The constant n/hfO is a detector con-
version factor, A4 is the area of the detector, and
Id(fd't,e(fa't)) is the field of the detector given by Eq.
(2-4) at location Eal = fgl/M. The assumption made here is
that the field intensity at Edl is constant over the detec-
tor area. If the observation time is short enough such that

the phase is approximately constant in the interval (0,T) to

10




fit the assumptions of Chapter I, the time dependence of
the phase can be dropped. The interval T is assumed to be
much larger than the period 1 of the modulated field.

Equation (2-6) becomes

r(t) = s(t,8) + n(t), 0 < tsT (2-8)

where

s(t,8) = a + b sin(wt + 8) (2-9)

is the output signal of one detector, and

A gn 1 2 2.2
a = §F <Z + —§>M A Ad (2-10)
o) i
2.2
A gn 2M7A _
b hfo ( - )Ad . (2-11)

Chapter III further models the detector signal in order to

pursue the photon count approach established in Chapter I.

11




III Phase Estimation Preliminaries

Reconstruction of the wavefront requires knowledge of
the phase distribution of the optical field within the aper-
ture. However, the knowledge provided by the shearing
interferometers is in the form of a phase difference between
two points along the line of shear as given by Eg. (2-3).

In the simplest form, the problem is of phase difference
estimation from the measurement of a single detector. The
phase difference is known as the wavefront difference func-

tion given by (Refs 6:49 and 7:16)
A¢(ra) = ¢(ra - Msd) - (b(ra + Msd) (3-1)

where ¢(§é - Mga) and ¢(?a + MEd) are the phases at the
aperture which we ultimately want to estimate. The compo-

nents of the wavefront difference function in cartesian

coordinates are given by

o(r, - Msy) = ¢(X, - Msy,,Y ), X-shear  (3-2)
= ¢(X,, Y, - Msgy)+ Y-shear (3-3)
O(r, + MT ) = (X, + Msg,.,Y.), X-shear  (3-4)
= ¢(Xa, Y, + Msdy), Y-shear (3-5)

Figure 4 illustrates the phase distribution described by
Egs. (3-2)-(3-5). The shear distances are usually made

equal so that sy sq4- When M = -1 (fd and Ea are

x - de

12
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X~-Direction

Fig 4. Phase Distribution at the Aperture Seen by
Detectors in the Back Focal Plane

also negative), the wavefront difference function measured
at the detector plane gives information of the phase points
located one shear distance Sq away on each side of the
detector. To estimate the actual phases ¢, the information
must be collected from all detectors. This will be addressed
in Chapter VI, Chapters IV and V will concentrate on the
estimation of the phase difference 6(5&) from one detector
only. Prior to considering the estimation problem, a signal
model must be found using the hypothetical CCD photon count-

ing detector.
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Signal Model

A signal model is developed in this section to estimate
the phase difference 6 measured by each detector following
the integration approach with CCD devices. fThis is equiva-
lent to saying that the output of each detector is sampled
by a correlator structure as shown in Figure 5. 1In this
correlator model, the observation r(t), which represents
the cathode current, is sampled by a vector of K orthogonal

basis functions
= T
plE) = Twy(e) eee Uy (E) e Y (0D17, (3-6)

(the superscript T means transpose of the matrix) where each

basis function wj(t) is given by

lbj(t) cls't-stﬁt

3 j+1

0 , otherwise, (3-7)

with q being the electron charge and tj a sequence of k
equal~length, non-overlapping time subintervals in one
observation interval of length T. The resulting output is

a vector of k observations

r = [rl cee X o aen rk]T (3-8)

J

which represent photon counts in the time subinterval
(tj’tj+1)' With the signal represented in this manner, the

following equalities are true:
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T
vy (t) .
r(t)
P [ (rae f—er.
. T J
by (e :
vy (£)

Fig 5. Egquivalent Correlator Model of the CCD Detector

£y +T

/ V(). (8)dt = 2 | i = j
i bl 2k
¢ q
1
= 0 ,i#7 (3-9)
and
R 2, k
r(t) = l.i.m. L2 ¢ r.ov.(t) , (3-10)
k » o T j:]_ 33

is satisfied. This condition known as the Cauchy criterion
for convergence of random sequences (Ref 8:262) is satis-
fied by the choice of the tj's as non-overlapping time
subintervals. Equations (3-9) and (3-10) are the tools

needed in the forthcoming parameter estimation analysis.
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This analysis will be the classical discrete observation
problem with generalizations to the continuous observation
form using Eq. (3-10). For this purpose and to define t.
properly, the observation period is divided into k equal
subintervals (tj,tj+l). The functions wj(t) are, therefore,
identical except for their sequential posi:ion in time. In
order to simplify the derivation let the initial time be

t), = -T/2k and the final time t 4T be t, = (2k-1)T/2k for
any interval T. Thus, the integration limits for the jth

subinterval are

_ (23=-3)T
tj = —LZk—— (3-12)

and tj+l = igi%%lz . (3-13)
The correlation operation
T
rj = f r(t)wj(t)dt ' (3-14)
0]
indicated in Figure 5 is then given by

tj+l
r(t)
. = dt
rJ j[ q

t.
J

541 541
- / S(t 9 at. + / “———‘qt) dt ,  (3-15)
t

t.
J

which can be conveniently defined as

. = .(6) + n. , 3-1
rJ sJ( ) nJ ( 6)
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where
tye1
1
5. (0 = = t,0)d -17
sj( ) a j( s ( )dt (3-17)
t.
J
and
tj+l
1
. = = t)d -
nJ g / n(t)dt (3-18)
t.
J

with tj and tj+l given by Egs. (3-12) and (3-13). Because
the observation r(t) has the form of an electrical current,
the correlation functions of Eq. (3-7) were selected so that

rj, s(6), and nj have the physical interpretation of photons,
both signal and noise, counted in each observation subinter-
k
val (t.,t. .). The sum I r. corresponds to the total
1773+ j=1 J

photons counted in the observation interval (tl,t +T). 1If

1
the functional form of s(t,8) given by Egq. (2-9) is substi-

tuted into Eg. (3-17), the signal in discrete form becomes

e
o

j+1
sj(e) = / [a + b sin(wt + 06)]1dt , (3-19)

t.
J

Qe

for 6(t) constant over T.

The integration indicated by Eg. (3-19) yields

- t.] ‘

= 2
sj(e) = g

b
+ = [cos(wtj + 8) - cos(wtj+ + 06)] . (3-20)

1

If the observation interval is several times the modulation

period so that many frequency cycles are observed each time,
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then they are related by

|3

(3-21)

where 1 is as in Eq. (2-5). With the identity of Eq. (3-21)

substituted into Eq. (3-20), the signal equation becomes

_ aT , bT
sj(e) gk + 2TgN

[cos(%?(Zj—3)+0)—cos(%?(2j—1)+0)] . (3-22)

where the definitions of Egs. (3-12) and (3-13) were used

as integration limits. However, in order to preserve the
phase information, a small shear distance is required (Refs
6:41 and 16:2622). For small shear, the modulation fre-
quency w must be low relative to the optical field frequency
such as 25 kilohertz (Ref 4:363). Thus, typically 1 = 0.04
milliseconds and N can range from unity to a very large num-
ber depending on how fast the phase changes in time. For
simplicity and to check with Wyant's results, let N = 1 so

that Eq. (3-22) becomes

_ aT bT
sj(e) - gk + 2nq

[cos(%(2j—3)+0)-cos(%(2j-l)+6)] ) (3-23)

Although Eq. (3-23) gives an exact expression for the photon
counts in terms of 0, it is not in a workable form. It is

therefore necessary to expand the cosine functions to obtain
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T bT m . .
sj(O) = %E + EEE-{[cos§(23—3)—cos%(2j—l)]cosﬁ

—[sin%(Zj—3)-sin%(2j-l)]sinO}.
(3-24)

Equation (3-24) is the expression that will be used to rep-
resent the signal-generated photon counts. For ease in fur-

ther derivations, Eq. (3-24) can be more compactly written

as
_ aT bT _ : _
sj(e) = gk + 21q [ajcose 8j51n6] ' (3-25)
where
- U : - i f -
aj = cos (23-3) cos i (23-1) (3-26)
By = sin T (2§-3) - sin % (23-1) . (3-27)

With the above signal model completed, the estimation
procedure to obtain 5(5) will be considered next. The "hat"

over 0 (r) indicates that this is just an estimate of 6, and

the argument "r" indicates that the estimate is in terms of
the observation vector r of Eq. (3-8). The estimate 6(5)
will be performed based on the criteria of Maximum A Pos-
teriori and Maximum Likelihood estimation. Before applying
these criteria to find the phase estimates in Chapters 1V, ‘
V, and VI, these concepts will be briefly explained in the

following section.
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Maximum A Posteriori and Maximum Likelihood Estimation
Theorics

Estimation of the phase difference 6 measured by &
single detector at a fixed location Eé and time t, and of
the actual phases ¢ measured over the aperture by two detec-
tor arrays will be made applying the concepts of Maximum A
Posteriori (MAP) and Maximum Likelihood (ML) estimation
theories. The MAP and ML estimates of & are those values
6(5) for which the probability of having found the correct 8
after the measurement is made is maximum. This is equiva-
lent to maximizing the a posteriori probability density
function of 6 conditioned on the observations. Let this

a posteriori density be represented by

f £(6]5) , (3-28)

8|

and let it be maximized by the proper choice of 8(r). With
the condition that the maximum occurs within the range of 6,

maximization is obtained by setting

)

35[fe|r(9|£)] = 0 . (3-29)

An equivalent and sometimes more convenient form of Eq.

(3-29) is given by
] =
ﬁ[1nfol£(ﬂ[r_)] = 0. (3-30)

By using the Baye's rule substitution
lee(glo)fo(ﬂ)

(8lry = (3-31)
= f£(§)

folx
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In Eq. (3-30), the necessary but not sufficient condition

for the MAP estimate is found to be (Ref 14:58)

3 _
55[1nf£l8(£|9) + 1nf (8)] = 0 . (3-32)
MAP

Because 6 is in the argument of a sine function, it is

modulo 2n. The ML estimate of the phase is then found by
modeling the a priori density fe(e) as uniform within the
range of 8, which is the interval (-w,m). The ML estimate

is, therefore, given by (Ref 14:65)

3 =
sg[1nf£|e(£|e)]| = 0. (3-33)
ML
Equations (3-32) and (3-33) are the equations for MAP and

ML parameter estimation. The parameter so found is the one
with highest probability of being the true value. There, of
course, may be false solutions, and an error is associated
with each estimate. The errors will be treated in the next
chapters after the solution algorithms have been found.

The problem of estimating e(Ea’t) in the presence of noise
will be addressed next; first, it will be investigated in
the context of a Gaussian problem where the only noise is
due to thermal noise limited detectors, and then in the con-
text of a Poisson problem when the shot noise is the predom-
inant noise source. The approach, however, will be the same
in both Gaussian and Poisson cases: photon counting as the

only alternative under low light level conditions.
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Iv Phase Estimation in White Gaussian Noise

When the output field of the interferometer is received
by a detector array with predominant thermal noise, the
noise is adequately modeled by a zero-mean, stationary
white Gaussian process described by the probability density

{Ref 8:360)

1/2

)(n) = [2ﬂ0i]_ exp[-nz/Zoi] ' (4-1)

fn(t

where the variance is given by
(4-2)

The process has a double-sided, flat power spectral density
N
7; over and beyond the spectral region of interest. If the

noise is described in the form of a random current, addi-
tive to the current output of the detector, the spectral
density is given by (Ref 8:361)

No 2kTO

5 = (watts per hertz -- per ohm) , (4-3)

R
e

where k is the Boltzmann constant, To is the operating tem-
perature and Re is the equévalent resistance of the detec-
tor. On a per-ohm basis, 7? has the units of energy. The
correlation function of the noise process is the inverse
Fourier transform of the power spectral density. For sta-
tionary white noise it is given by

N
Eln(t)n(t)] = —= 8(t-t') . (4-4)
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On a per-ohm basis, the correclation function has the units
of power. The first order statistics are jiven by
E[n(t)] = 0 . (4-5)

Before applying the cr..cepts of MAP and ML estimation,
it is necessary to obtain the density function of the obser-
vation vector r conditioned on the parameter ¢, as required
by Egs. (3-32) and (3-33). Therefore, the following devel-

opment is made:
Referring to Egs. (3-14) and (4-6)
E[nj] = /dt E[n(t)]d)j(t) = 0. (4-6)
T

Referring to Egs. (3-9) and (4-4)

E[njz.] = / dt dt'E[n(t)n(t')]dzj(t)u‘)j(t')
T T
= 1= 8 -t! . L '
dt at' [~ (tt)wj(tH}J(t)]
T T
N N_T
= 70/ w]?(t)dt = —= (4-7)
T 2q7k
23




Theref re,

E[rj] sj(e)

1
It

Var[rj] Var[nj]

(4-8)

5= - (4-9)

In addition to the variance and the mean of rj, it is neces-

sary to demonstrate that rj and rq are uncorrelated. Thus,

covir.,r
{ 3 q]

I

E[njnq]

Further evaluating Eg. (4-10)

E[njnq]

E[(rj - E[rj])(rj - E[rq])]

E[(rj - Sj(e))(rq - sq(e))]

(4-10)

J/ dt ./. dt'E[n(t)n(t')]wj(t)wq(t')]

N
= / dt/ at* [ 6(t=t )y (e v (£1)]

N
- °
= = f b (B) v, (B)de
T

0: J # q . (4"‘11)

Therefore, from Egs. (3-16), (4-6), and (4-11)

cov[rj,rq] = E[njnq] = 0
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which implies that rj and rq are uncorrelated. The prob-
abilistic description of rj given 6 is the description of
nj = rj - sj(O), which is also Gaussian since n. is a linear

operation on n(t). The conditional density of the observa-

tion can be written as

£ |0(rj!9) = [2nNoT/2q2k}l/2

r,
2
(r. - s.(9))
exp[— J J } . (4-13)

J
2
2(NOT/2q k)
Because th~ observations rj are uncorrelated and condition-
ally Gaussian, they are independent. Therefore, the obser-

vation vector has a conditional density function given by

£ 1g(rsl9)

f 8
r]oZl® L

Maximum A Posterijiori Estimate

The MAP estimate of a parameter 6 observed in noise is
based, as indicated by Eqg. (3-32), on the conditional dens-
ity of the observations r given 6, as well as on the
a priori density of 6. Considering first the conditional

density of r given 6, the following procedure is developed:
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From Eq. (4-14),

2,1k/2
k
fripfEl®) = [%d

k
q’k 2 2
- == I — . S. - .
exp[ NT I (J:__J 2szJ(e) + sj(e)J

(4-15)

The natural logarithm of Eq. (4-15) is

2 2, k
k q°k gk 2 2
A = = - -
1nfrle(£|\) 7 In - - 5 F -E (rj ersj(e) + sj(e))
s o o” j=1
2, k 2, k
= %?ﬁ? £ r.s.(8) - %—% z s2(e)
or j=1 I3 o j=1 3
2, k 2
-9k 2 . k gk -
N 'E rj + 5 1n NT - (4-16)
o’ j=1 o
The derivative of Egqg. (4-16) with respect to 6 1is
2, k
3 29k )
= 1n f_,.(r|0o) = 24X 1 r. 2 s, (8)
30 r|e NT 52p 73 36 73
2, k
-28E 1 s (0) 5 s () .
o J=1 J J
(4-17)

By substituting Egq. (4-17) into Eq. (3-32), a general

expression for the MAP estimate is obtained and is given by

2q°k § [r. - s.(0)]=> s.(8) + ==[1nf.(0)] = 0
NoT 521003 S5 36 53 ag L 1nEg (O3] = .

(4-18)
The solution of Eq. (4-18) when the appropriate expressions

for sj(e) and fe(O) are substituted for yields 0 (xr) MAD*
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Before doing this, it is interestinyg to observe what happens

when k becomes very large. It is very simple to prove that

if

g(t)

and h(t)

where ¢i(t) are orthogonal functions such that

T
/ $2(t) = %
(o]
T
and ./. ¢i(t)¢j(t) = 0, i#3, (4-20)
(0]
k T
then l.i.m. A I g/h, = f g(t)h(t)dt . (4-21)
k > e j=1 * A

With the help of Egs. (4-19)-(4-21) and the orthogonal rela-
tion of Eg. (3-10), Egq. (4-18) becomes (tl+0 as ko)

T
1% l [r(t) - s(t,8)15% s(t,8)dt + 55(Inf  (8)] = 0 .
(4-22)
Equation (4-22) is the general expression for the MAP esti-
mate 6 of a parameter 6 in a continuous waveform r(t)
observed in white Gaussian noise (Ref 14:275).

Returning to Eq. (4-18), the substitution for sj(e)

given by Eq. (3-25) is made to obtain §(£) as follows:
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From Eg. (3-25)

_ arT bT .
sj(e) = ai + E;a [ajcose - Bj51n6] . (4-23)

Its phase derivative is

g% 5,000 = - é%% aj5ind + Bicos0) . (4-24)

Equation (4-18) can now be written as

2q%x
N T

k
z
j=

. *rj - ax - [ajcose - Bjsine])

bT . |
" 7ng [aj51ne + BjCOSQ]“

+ g% [Infy (6)] = o . (4-25)

In order to simplify notation, let a new function F(8) be

defined as

Fo) & g% [1nf, (8)) . (4-26)

After some algebraic manipulation of Egq. (4-25), the follow-

ing MAP estimate of 6 is obtained:

. |
aT - aT N
jil{“j T qxleSint D)+ Ixry - gl Bycostz)
2 2
k u, - BY R .
- J%%.j£13(~1—3r~1>sin29(£) + aijcosze(Ed
I F(6) = © (4-27)
gkb !
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3

where a. and Bj are defined by Egs. (3-26) and (3-27).
Althougn Eq. (4-27) defines §(£) MApP’ 23S is, it is not in
final <“orm. The second summation in Eq. (4-27) vanishes

for all values of k except for k = 2. This was determined

on a computer check and will be used without a rigcrous

procf. Therefore, Eq. (4-27) becomes

k ~ k
atT . aT N
I [r., - =la.sin0(x) + I [r, - Z3]B8.cosf(r)
j=1 I 9k’ 3 j=1 1 Ik 3 =
nNo
- 3% F(6) = 0; k23, (4-28)

whiere the constraint that k > 3 is imposed on the estimator

because for k = 1, the two sums vanish.
Now, the conditions for which the second summation in
Eg. (4-27) vanishes are to be investigated. For that to

happen, it is required that

k (a2 - g%
c—3J4 _J = 9 (4-29)
j=1
k
and I a.B. = 0. (4-30)
j=1 J ]

Substitution of the expressions given by Egs. (3-26) and

(3-27) for aj and Bj into Egs. (4-29) and (4-30) yields

=

{[cos ;(23-3) - cos 1‘%(23'-1)12

-lsin 1(23-3) - sin L25-11%) = o, (4-31)
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and

[ e B

W . o .
. {{cos x(23-3) - cos £ (23-1))

(sin %(23'-3) - sin %(23‘—1)1} = 0. (4~32)

By carrying out the operations indicated by Egs. (4-31) a-»~?

(4-32), it is found that the conditions for a vanishing

term are
k
I {cos %}(2j-3) + cos %g(zj—l)
j=1
2T .
- 2cos 7;(23—2)} = 0 (4~33)
k 2n . 2m
and r {sin 7?(23-3) + sin j;(Zj—l)
j=1

- 2sin %}(2j-z)} = 0. (4-34)

The question is, for what values of k do Egs. (4-33) and
(4-34) hold? The easiest way to find out is by computing
the summations for a number of k's. This was done on the
computer for k = 1 to k = 28 with the assuring result that
only for k = 2 both sums do not equal zero. It was also

observed (and will be used without a rigorous proof) that
r a, = I B. =0 (4-35)

for all k.
Therefore, Eq. (4-28) simplifies even further to yield the

final result of the discrete MAP estimate of 8 as
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k k R
L a.r.sin@(g) + I PB.r.cosbO(r)
j=1 J j=l J 3 -
nNo
- axb F(6) = 0, k=2 3. (4-36)

For the particular case when the phase 8 is a Gaussian ran-
dom variable with variance less than 0.8 radz, the density

function is practically given by

£,(0) = [2no§]‘l/2exp[-ez/2o§] , (4-37)

in the interval (~m,m). Then,

_? _ 8
F(8) = ggllnfe(e)] = - == . (4-38)
o}
6
By letting 6 = 6(5), Eq. (4-36) becomes
A qkbd2
@ =
o
k A k ~
{-t B.r.cosb(r) - I a.r.sinf(r)} . (4-39)

Equation (4-39) is the MAP estimate of a Gaussian phase 8 in
terms of discrete observations. The MAP estimate is,

N

therefore, a function of the detector noise 7? given by Eqg.

(4-3), the variance og of the random phase and the amplitude

b of the signal. Equation (4-39) is of the form
X = Ucosx + Vsinx (4-40)

and cannot be reduced any further. It can be implemented

in the form of a photon processor as shown in Figure 6.
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Fig 6. Photon Count Processor for MAP Estimation of €

Equation (4-40) can, however, be solved numerically on the
computer. An effective way is to expand the sine and

cosine functions into series and solve the resulting poly-
nomial iteratively as a predictor-corrector algorithm. A
fifth order expansion {(three terms in each function) results
in reasonably good solutions up to 0.7 radians, but it gives
gross errors for higher phase angles. On the other hand, a
seventh order expansion (four terms in each function) proved
to give very accurate results regardless of the phasc value.
Thus, using four terms in the exéansion of the trigonometric
functions of Eg. (4-40) (Ref 12:472), the following poly-

nomial is obtained:
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5040U + 5040 (V-1)x - 2520Ux° - 840Vx>
+ 210ux? + 42vx® - ux® - vx! = o (4-41)
Equation (4-41) has seven roots. It was solved using a

subroutinc from the International Mathematical and Statisti-
cal Library (IMSL) package available for use with the CDC
6600/Cyber 74 computer system at the Air Force Institute of
Technology. The real roots so found that satisfy Eg. (4-40)
are the estimator solutions. It was found from several
tests (no proof included) that the lowest root always gives
the solution with the smallest error, and is therefore the

sought MAP estimate. As an example, the solution to

x = 11.23108494624 cosx

~38.93776905131 sinx , (4-42)

taken from an actual simulation run, is, using single pre-

cision,
x = 0.2740523040524 radians (4-43)
with a discrepancy of

7.920348821244E-9 radians , (4-44)

which is an extremely accurate result.
For the purpose of comparison, it is easily found
using Eq. (4-22) that the MAP phase estimate from a continu-

ous Mmeasurement is (Refs 11:189 and 15:129)
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X 2bo? ( A
6 = N 'E/' r(t)cos wt dt}cosH
° (0
g a
-[‘/. r(t)sin wt dt]sina’. (4-45)
0

In order to give an idea of the forms assumed by Eq.
(4-39) for a specified number of observations, a few illus-
trative examples are given in Table I. Finally, in order
not to disrupt the continuity of the present Jevelopments,
verification of Eg. (4-39) through computer simulation is

reserved for the last section of this chapter.

Maximum Likelihood Estimate

The ML estimate of a parameter 6 observed in noise is
based on the conditional density of the observations given 6§
only. This is performed when the statistical description of
theta is not available (Ref 14:65). It is reasonable to
assume that 6 is equally likely to occur in the interval
(-7,m) not having any other a priori information. The

density of 8 is therefore modeled as

1
fe(e) 7?]’-’ -TT_<_9§TF

0 , elsewhere , (4-46)

with zero mean value and variance n2/3. From Eg. (4-46), it
is found that F(0) = 0 (equivalent to a large 05 in Eqg.

(4-37)), and the ML estimate is defined by Eq. (3-33).
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TABLE I

Examples of the Maximum A Posteriori Phase
Estimator Form for k Observations

3/3 A 3 A
= (2rl—r2-r3)koc056(£) - j(rz-r3)k051n8(£)
/2 (ry-rj)k cosi(x) - /2 (r,-r,)k_sind (x)
3/3 2
= {2(rl~r4)+r2—r3—r5+r6]koc053(E)
- é(r +r. -r_-r_)k siné(r)
2'72 73 75 "6’ o =
T T
R/. r(t)coswtdt]kpcos@ - [./- r(t)sinmtdt]kpsiné
(o] (0]
2
A qkbo6
TN
c
2
A 2boe
No
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Equation (4-36) then bcecomes

k . k .
L a.r.sind(xr) + I B.r,cosb(r) = 0
j=1 J 3] j=1 33 -
for k > 3 . (4-47)
Finally, Eg. (4-47) reduces to
k
- ¥ B.r
A _ -1} g=1 37
8 (r) = tan K r k>3 . (4-48)
ML Loa.r.
j=1 J 3

Equation (4-48) is the ML estimate of the phase based on
discrete observations. The condition that k > 3 is main-
tained since for k = 1, the tangent of 6(£) is not defined
(zero divided by zerco) and for k = 2 the summations in Egs.
(4-29), (4-30), and (4-35) do not equal zero. Again for
comparison, as k becomes very large and with F(8) = 0, Eq.

{(4-45) gives (Ref 15:129)

T
f r(t) cos wt dt
) = tan_1 OT . (4-49)
ML J r(t) sin wt dat

0

Equation (4-49) is the ML phase e:timate made from a con-
tinuous measurement.

Equation (4-48) takes on different forms for each value
of k. In order to visualize how it changes, a few illustra-
tive examples are given in Table II. These results agree
with the findings of Wyant (Ref 16:264), which inspired the

work of this thesis, although he assumed shot noise instead.
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TABLE I1I

Examples of the Maximum Likelihood Phase

Estimator Form for k Observations

k tanG(rl . rk)
3 1; 2r —rz—r3
3 r2—r3
r.-r
4 rl—r3
2 "4
] £§ 2(rl-r4)+r2—r3—r5+r6
r2+r3—r5—r6
0.3129(rl—rll) + 0.2980(r2—rlo-r12+r20)
0.0967(r2+r10—r12-r20) + 0.1839(r3+r9—rl3—r19
- +0.2531(r3—r9—rl3+r19) + 0.1839(r4-r8~r19+rl81
+0.253l(r9+r8—rl4—r18) + 0.2976(r5+r7—r15—rl7)
'..+0.0967(r5—r7—r15+rl7)
+0.3129(r6—r16)
T
f r(t)cos wt dt
o (0]
T
_[ r(t)sin wt dt
(e]
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He originally noted that k > 3, and propecsed four inte-
grations. The result corresponds to the entry for k = 4 in
Table II.

Before proceeding to the algorithm verification, it is
necessary to determine (or predict) how good an estimate
can be obtained from Egs. (4-36) and (4-48). Therefore,
the question of performance remains to be addressed.

The conditions for which photon counting yields accu-

rate estimates are to be investigated in the next sections.

Performance of the Estimators

One measure of performance of an estimator is gencerally
given by the variance of the estimate with respect to the
true value. This measure of performance is known as the
Mean-Square Error (MSE), and in the case of unbiased esti-
mates (zero-mean errors), it is the variance of the error
itself.

For nonlinear estimates, the MS error is not simple to
compute, and a lower bound on the error is sought instead.
The most widely used bound is the one given by the Cramer-
Rao inequality (Ref 14:66-73). An approximate MS error
and the Cramer-Rao (lower) Bound (CRB) will be computed in
this paper and a comparison will be made to establish the
validity of the CRB bound to measure the performance of the
joint estimation problem addressed in Chapter VI.

Mean-Square Error. The MSE of an estimate is defined

as the expected value of the square error between the

38




ertimate 6(5) and the actual value of 0 (Refs 14:64, 17:412).

Let the error be defined as

e, & (0 -8w@) . (4-50)

The exact MSE is then given by (Ref 14:56)

2 _ _ A 2 _
Ele ] = fde fd£(8 6(r)) fe,r(e'E) . (4-51)
-0 - OO -
The joint density is given by the product fr|8(£|e)f9(e)'

For the MAP estimate, é(E) and the two densities are given
by Egs. (4-39), (4-14), and (4-37). For the Ml estimate,
@(5) and the densities are given by Eqgs. (4-48), (4-14), and
(4~46). The direct computation of Eg. (4-51) is difficult
to perform. However, an indirect computation suggested by
Sage and Melsa (Ref 11:189) is performed here for discrete
observations and yields a result that depends on the energy
of the system for large signal-to-noise ratios. These deri-
vations are developed in the following sections.

The MAP-MS Estimation Error. The MAP estimate of 6

when the a priori density is Gaussian is, from Eq. (4-36),

n k R k .
8(r) = - jil Bjrjkocose(E) - jil ajrjkosinO(g) .
(4-52)
where, from Table I,
k, 2 ko (4-53)
o nNO
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If the expression for‘rj given by Eq. (3-16) is substituted
into Eqg. (4-53), then the MAP estimate becomes, in terms of

signal and noise,

[ el
it ™=

Bjsj(e)kocosO(E) -

.n.k co 6 r
L 5 BjnJ oC0s (r)

1

/I el
it MR

a.sj(e)kOSinB(E) -

.n.k sinf (r)
e 3 aJn oSin (r) .

j 1 J
(4-54)

where sj(e) is given by Eg. (3-25). After some processing

of Eq. (4-54), the estimate becomes

6(x) = -2-k

o~ =

{B.cosg(r) + a.sin@(r)}
j 1 J - J -
k A 2 ~
{R.a.cosb cosf(r) - R5sinf cosb (r)
j=1 J 3] - J -

+

a?cose siné(E) - aijsine sinf (r)}

-k
o)

o=

{Bjnjcose(g) + ajnj51n8(£)} . (4-55)

j=1

The equalities of Egs. (4-30) and (4-35) can now be substi-

k k
tuted into Eqg. (4-55). By setting I a.B8. = I a. =
k s e
I B. = 0 and expanding the products of sin0:cos?(r) and

=1
=1 R .
cosB:sinb (r) into sums, Eg. (4-55) becomes
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D>
)
1l
o
p—]
o
[ By

{sj?[sin(e + 8(x)) + sin(8 - B(x))]
- a?[sin(e + 8(x)) - sin(6 - 8(x)))

_ko

[ By

{Bjnjcose(g) + ajnj31n6(£)} . (4-56)

j=1

The error €, defined in Eq. (4-50) is expected to be small;

otherwise, the estimate is meaningless. To ins: e this

condition, the approximation

sin(6 - 8(x)) = e, (4-57)

can be used in Eq. (4-56). By observing from Eq. (4-22)
k k

that I a? = I BY = 0, Eg. (4-56) can be transformed
j=1 j=1

to yield an expression for the error; so, it becomes

2
TN
= o . 5 2mgk
Ep = 7 V8B vy
E o
a6
k ~ ~ }
L .n.cosB(r) - a.n.sind ’ 4-58
55 {BJ 3¢ (xr) a;n sin (r) ( )

where new parameters have been defined as

at) ’ (4-59)

which is just a number that depends on the particular value

of k, and
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which is the ac component of the energy in the interval
(tl,tl+T) of the signal of Eg. (2-9).

The first check to be made on the estimate 6(5) using
Eg. (4-58) is that for bias (Ref 17:404). Thus, by recall-
ing from Eg. (4-7) that E[nj] = 0, the conditional expecta-

tion of the error given 6 is

nzN

= Y
2 'k
aoe

Solving for E[6(r)|6] and noticing that E[6|8] = 6, Eq.

Ele E[0(x) 0] . (4-61)

r|6] E

(4-61) gives

2 1

~ _ 2. - _
E[6(r)|6] = 6[1 + 7 N,Y, /E,05] . (4-62)

Thus, the conditional expected value of é(g) is a scaled
version of the true value of 8., The estimate approacheé
the true value as the signal to noise energy ratio in
(tl,tl+T), Ea/No, is made very large, which is expected when
the measurement is made in the absence of noise. Thus, in
the limiting case, and only in that case,
lim  E{f(x)jo1 = 6, (4-63)
Ea/No+m
and the MAP phase estimate is asymptotically unbiased (Ref

17:404).
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The second computation to be made from £, is that of

the MS error between 0(r) and 0. The MS error is defined

as the expected value of 55. The first order statistics

needed to asymptotically characterize the MSE are

E[6] = 0 (4-64)
E[6(x)] = E[E(B(x)]8]] = o0 (4-65)
E[e ] = E[8] - E[6(x)] = o0 . (4-65)

In such a case, large Ea/No, the M$ error is both the vari-
ance of @(5) and the variance of €. which will be defined

asymptotically as

1>

v_(e,) lim V. _(e.)

ar r
Ea/No—wo

= 1lim E[gﬁ] ) (4-67)
Ea/No—Nzo

From Eqg. (4~58) the second order moment of € is given by

N

2, _ 2 2 ° 2
Efe ] = [m°N_ v, /E 0,17 E[(6(x))"]

+ [Zﬂquk/bT]2

k A A
E[{ £ (B.n.cosh(r) + a,n.sind(r))}?] , (4-68)
j=1 J 3] - J ] -
where the identity h[nj] = 0 was used. The second expecta-

tion term in Eq. (4-68) reduces to

L
~ ’
2g°k j=1 3
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where use of the identities of Egs. (4-8), (4-29) and {4-30)
was made. Finally, by using Egs. (4-59) and (4-60), Eqg.

(4-68) becomes

Ele2) = PNy, /E 021%E1(5 ()2

2
+ 7 NOYk/Ea . (4-69)

Equation (4-69) is the MS error of the phase estimate. The
difficulty with this expression is that E[(é(g))z] must be
evaluated from the density function of Eq. (4-14) (Ref 14:64).
However, if the ratio Ea/No is made very large, the error
variance becomes, from Eg. (4-67)

b 2N y

vole) = —2E . (4-70)

Ea

It will be beneficial to inquire what the effect of Yy in
Eq. (4-70) is as k varies from k = 3 to the limit where it
becomes very large. A plot of Yy versus k for large signal-

to-noise ratio (SNR) is shown in Figure 7 as a normalized

l variance
i Va(er)Ea
nzN
o)
k 2,-1
A plot of Ykk; that is, [ L aj] , versus k is shown in
j=1

Figure 8 to show how fast the (normalized) variance, Y
approaches linearity as k increases. From Figure 7 it is
observed that Yy tends to stabilize at around 0.051 as k
becomes large. This corresponds to the asymptotic slope of

, ) the curve in Figure 8. Thus, equation (4-70) becomes
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= 3= . (4-71)

The MS error of a phase estimate for large signal-to-noise
energy ratio in (tl,tl+T) is just a multiple of the inverse
SNR scaled by a factor that depends on the number of the
observation interval subdivisions, k. A few examples to
illustrate Eq. (4-70) are given in Table III.

The ML-MS Estimation Lrror. The same procedure used

in the previous section to determine the MAP-MS error can be
used for the ML case. Using Eg. (4-48) as a starting point
and substituting for rj given by Eg. (3-16), it is found that

the ML estimate is unconditionally unbiased; that is,
E[6(x)]e] = 8 . (4-72)

This is easy to verify by observing that for ML, og = o in
the MAP equations. Thus, Eg. (4-69) reduces to Eq. {(4-72)
without any SNR restrictions. Completion of the procedure

yields an unconditional error variance given by

nzNOYk
V. (e ) = ——— . (4-73)

r
ar Ea

Again this is easily verified by letting og = ®© in Eq.
(4-69). A different procedure, however, carried out by
Raemer (Ref 9:263,458) to compute directly the Root Mean-

Square (RMS) error defined as
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TABLE III

Examples of the MAP Phase Estimator
Error Variance for Large SNR

k Va(er)
3 an? No/2 1.462 No/?2
27 E = 1 E
a a
4 33 No/2 = 1.2337 No/2
8 E . E
a a
5 2n?_ No/Z 1.1427 No/2
17.27 E - : E
a a
2N /2 N /2
6 %7 g = 1.0966 g
a a
15 2n2_ Mo/ = 1.0147 No/2
19.45 E_ E,
20 2n?_ No/2 = 1.0082 No/2
19.57 "B, E_
3 N_/2 i N_/2
E E
a a
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e A

1/2
» )

v, (c , k=, (4-74)

where 0(w) is as in Eq. (4-49) did show a SNR dependence of
the ML estimate. DBy cxpanding the arc tangent in Eg. (4-49)
Raemer obtained similar results with the condition of a

large Ea/No ratio. Specifically,

q
1
FNTS)
[

]

(4-75)

where oy and Bn were defined parameters of the signal and
noise treated as narrowband processes. Therefore, the MAP
and ML error variance are the same and approach zero when
the signal is strong relative to the receiver noise. Thus,
Table III is equally an ML comparison of the error variance
in terms of the observations k. To show graphically the
relative improvement of entries in Table III, define in

logarithmic terms

1>

V. (e )| k=3
Io(dB) 10 log [ar—rl——]

Var(er)

]

10 log (Y3/Yk) . (4-76)

The relative improvement in decibels (dB) of the error €,
with respect to the error in three subintervals is shown
in Figure 9.

The important conclusion of this section is that in
the presence of thermal (receiver) noise, the error in the

phase estimate is strictly a function of the signal-to-noise
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ratio. The ideal procedure is to perform a current measure-
ment (k = «), for which the error is the inverse SNR multi-
plied by a factor of 1. 7The procedure is suboptimal if
discrete photon counts are made (k < «~), for which case the
same error is scaled by an appropriate factor determined by
k. Referring to the curve in Figure 2, the continuous cur-
rent-based estimate offers an improvement of 1.65 dB over
the discrete photon count based on only k = 3 integrations.
Notice, however, that if the hypothetical CCD detectors can
provide 15 or more integrations over T, then the improve-
ment of a continuous measurement over photon counting is
only 0.064 dB. Thus, provided the SNR restrictions are met,
the photon counting algorithms offer a viable alternative
for phase estimation when the signal levels are low.
Considering the extremes, when the SNR is low, neither
a current measurement nor a photon couvnt will yield an accu-
rate phase estimate. On the other hand, in the absence of
noise, the error is zero (Ea/NO = w) as expected from a

perfect measurement. This is easily proven by substituting

rj = sj(e), given by Eq. (4-23), back into Egs. (4-36)
(with F(9) = 0) or (4-48). With the help of Egs. (4-29),
(4-30), and (4-35) the result obtained is 6({) = 0 z&s

expected. This was also verified computationally.
The level of SNR to assurc with a given certainty that
an estimate is within a specificed phase range has becen

addressed in the literature and will not be repeated here
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(Ref 9:266). Instead, a ygeneral observation will be made
from the results of the computer simulation discussed at
the end of this chapter.

In order to complete the error analysis, it is desir-
able to inguire what the minimum MS error is, and the con-
ditions under which it is attained. A good description is
given by the Cramer-~Rao bound on the minimum MSE although
other bounds are also available (Ref 14:71). The Cramer-
Rao approach will be considered in the next section.

Cramer—-Rao Lower Bound on the Minimum MS Error. The

lower limit on the value that the minimum MS error (MMSE)
can have can be calculated without actually having to know
the estimate. TFor the cascec of an unbiased estimate, the

CRB bound is given by (Ref 14:72)

- 3 2,,-1

CRB = ({E[(yg 1nf, o (x,8))"]]
= —{E[jgi Inf { (‘)]}“l (4-77)
) 202 L0 .

For the case of a biased non~-random parameter, a bound
expression is given by Van Trees (Ref 14:147).

In order to use Egq. (4-77) in the problem at hand, it
is necessary to work with the large SNR restriction, for
which the estimate @(E) was shown to be asymptotically

unbiased. Thus, the bound s given by

Vo(e,) 2 CRB, E /N > = . (4-78)
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Before letting the SNR become very large let

2
= (g[S -1
V. (e.) > CRB = {E[30 lnfEIG(EIO) + lnfo(O)]}
(4-79)
For the observation in white Gaussian noise, it is conven-
ient to specialize Eq. (4-79) further before considering

the phase problem. From Eq. (4-17)

2 k
3 297k 3
— 1Inf (r|9y = I r. == s.(0)
36 r|o - N,T 5o1 3 36 73
2 k
2q°k 6
- L s.(8) = s.(86)
NOT j=1 J 30 73

(4-80)

The second derivative of Egq. (4-80) with respect to 0 1is

2 2.k 2
3 _ 2q% $ 3
2 Inf_,, (rl8) t Jir. - s.(8)] 2= s.(9)
202 Zlo'" NoT g=1 |3 73 302 3
(as.(e)>2(
- ——%3—— ’ . (4-81)
The CRB bound then becomes
2, k 2
CRB = —‘%HT}‘ L E[(r. - 5.(0)) 2o s (0)
| NT 521 i 73 50
25, (0)) % )2 |7t
- ——%5——- + E| < 1nf () . (4-82)
36 |

By observing that




. - . (0 =
rJ S]( ) n

i and

E(nj] = 0 ’

the MAP error variance becomes in terms of the CRB bound

(202 % <35.(6))2 , -1
v (e 2 .‘—9——N = & ——) -Eigp PO k23,
o j=1
for Ea/No > o (4-83)

Without the large SNR restriction, Eg. (4-83) is a general

expression for the lower bound on the error variance of any
2

unbiased estimate (Ref 17:412). The factor QTE in Eg. (4-83)

comes from the use of the orthogonal functions defined by
Egs. (3-7) and (3-9). 1In the limit as k becomes very large,

Eg. (4-83) becomes
-1

(o}

‘2 ! 3s (t,H) 2 3 ’
Va(Er) 2 ‘ﬁ”‘ f (T) dt - E[s—e' F(e)]‘
0

for Ea/No > o, (4-84)

where use of Egs. (3-10) and (4-21) was made. This is the
result for the bound on the error of the estimate of a
parameter measured in a continuous waveform regardless of
algorithmic form (Ref 14:275). TReturning to Eq. (4-83),
from Eq. (4-24),

3

[+ (6)]2 = (=) g [a.sind + B s'nO]2
36 %3 - j 35t

(4-85)
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By use of Eg. (4-85) in Egq. (4-83), the bound becomes

‘ 2 k -1
2q°k , bT,2 . 2 _ KB
CRB ‘N T 7560 ‘E [aj51n9 + Bjcosel E[ae F(O)U
o j=1
ok b2 £ 2.2 22
== (=) z [uisin®0 + RScos™8 + a.f.sin20]
No 27 421 3 3 373
3 |-1
- Els5 F(0)] , k23 . (4-86)
a6 ‘
Invoking the identities of Egs. (4-29) and (4-30) one more
time, Eg. {(4-86) can be simplified to
2 k -1
vole,) 2 ‘-’%’L t ool - Elgy F(G)]:
lan N,/2 3=1 )
E -1
2 «‘——a———E[—‘?—F(O)J' » k23,
'nzN Y 98 ‘
o'k

for Ea/No > o, (4-87)

Equation (4-87) is the lower bound on the MS error in the
estimate of 9 given by the Cramer-Rao inequality. It is a
function of the ac component of the signal energy Ea’ the
nocise energy Ng and the observation subinterval k repre-
sented by Yi+ It is also a function of the statistical
description of 8 represented by the density fe(O). In the
particular case where the phase is modeled as a Gaussian

random variable with the density given by Eq. (4-37), then
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E[g% F(0)] - j? . (4-88)

%

The bound on the error variance becomes

E -1
a 1l
Va(gr) 2 [HZN + ;7]
o'k 0
nzN Y 02
o'k 6
Z. 2 2 2 ’ k 2 3 ’
m Noykoe + Eace
for Ea/N0 > o (4-89)
In the limiting case as k becomes very large, l/Yk = 19.6
(see p. 44), so
2E -1
. a 1
l.i.m. Va(Er) 2 l:_i‘—l— + —3]
k » o) g
2
oeNo
2 )
No + 2Ea0e
for Ea/No +> o (4-90)

Equation (4-90) gives the MAP lower bound on the error var-
iance based on a continuous measurement. Finally, when the

large SNR condition is used, Eq. (4-90) becomes

N
, . ) o
lim {1.i.m. Var(er)} 2 5= . (4-91)

E
En/No->°° k » a

This is precisely the result given by Eq. (4-71). There-

fore, as the term Ea/No grows unbounded, the true error
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variance approaches the CRB with equality; the MAP estimates
6(r) and 0 are asymptotically efficient (Ref 14:276). Thus,
the Cramer-Rao bounds are also given in Table III. The

same observation is made for the ML-CRB on the error vari-

ance. For the ML-CRB, from Eq. (4-46),
El-> F(0)] = 0 (4-92)
o8 !
and Eq. (4-77) reduces to (Ref 14:66)

52 -1
CRB = -{E[- 1nfrle(516)]} . (4-93)
36 =

Therefore the bound for the ML error is, from Eq. (4-89) as

og gets large,

2

vole) 2 1—29z5 , k23, (4-94)
a
or from Eq. (4-90),
. No
i.i.g. Va(er) > fﬁ; . (4-95)

From Eg. (4-90) it is observed that when the signal is

weak, the error is limited by the variance 02 But this is

g
not the same result expressed by Egq. (4-69), and therefore
the Cramer-Rao bound becomes meaningless in such a case.

In conclusion, the analysis made in the Gaussian noise
context indicates that under thermal noise limited condi-

tions, measurement of a phasefront cannot be made accurately

except for large signal-to-noise ratios. For low light
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levels conforming to this restriction, the photon counting
technique is quite acceptable, but when the signal level
permits, a current measurement is most appropriate. At
this point, a verification of the algorithms derived in

Egs. (4-39) and (4-48), as well as a performance evaluation,
is overdue. This was done in a computer simulation, and is

presented in the following section.

Verification of the MAP and ML Estimators

A simulation program to test Egs. (4-39) and (4-48) was
written in FORTRAN and run on the CDC 6600 computer system.
After the parameters for the simulation have been input,
the program generates the signal counts sj(e), computed
from the true phase input and Eq. (3-24), and adds white
Gaussian noise counts nj, computed from

P. N T 1/2
n. = _‘l ["‘O_“] ’
J g "2k

(4-96)
where Pj is a number from a zero-mean, unit-variance,
Gaussian random number sequence, dgenerated using a subrou-
tine from the IMSL library. The program then estimates the
phase based on the noise-corrupted measurements rj using
Egqs. (4-39), (4-41) and (4-48) as needed.

The parameters chosen for this simulation are a 25
kilohertz modulation frequency, a 0.04 millisecond observa-
tion period (required by the choice of N = 1 in Eq. (3-22))
and a signal level in the order of 1 microamp. Although

the algorithm is independent of signal level (also verified
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by using 10 milliamps) this number was entered to sjimulate
the output of a detector under low signal levels. The num-
ber of counts rj thus generated are of the order of 108
photoelectrons and below. In the 0.04 millisecond observa-
tion time used, this corresponds to less than lOl3 photo~

electrons per second, a rate which is in the category of

low photon coherence. The cgimulation results are contained

in Figures 10-19.

Simulation Results for the MAP Estimator. The MAP

estimator simulation is a series of tests performed on Eq.
(4-39) to verify its performance as an estimator. 1In these
tests, Eq. (4-39) was used to estimate a known phase given
different signal-to-noise ratios following the procecure
outlined in the previous section. The tests were then
repeated to estimate different phase angles at a fixed SNR.
Several such tests were performed and the results presented
here are typical. The first set is shown in Figure 10.
These curves were obtained using a phase variance of 0.8
rad2, chosen as the safe maximum deviation for which Eq.
(4-38) can be used to obtain Eg. (4-39); and using a test
phase of 0.5234 radians (30°), which seemed a logical choice.
The five curves shown are the phase estimates plotted as a
function of the algorithmic form used (determined by k) for
the indicated signal-to-noise ratios (10 dB to 30 dB). The
same noise counts were used in each curve.

From this and other tests performed (by changing the

noise seed to generate Pj)’ it is observed that the estimate

59




S,dNS 3JUSI93JITJ 3 9seyqd =THUTS - SITNSOY UOTIRTNUTS d¥W 0T BTJ

M *STIHBAYILINIGNS NOILBAY3ISEO 40 ¥IBUNN

00" 8E OD"EE 00°"R2 00°€E2 po-8r O0°ET 0o"g 00°¢
[ | i | 1 1 ] 1 )
o
0001=MNg @ %
001=yNs X
05=uNg +
02=¥Ns ¥ K ,.n_v
oI=tNg @ Y 2
o I
1) HU
o
y o ™M
D & o y & r.o —
(0 X O =X
y O U
o
—
F D
Y Pt
| S Ww
."' st
y b O
¢, \‘..~
00$1=0336 3SION \
3SI0H NHISSNYO 31I1HN Wy o
MBS OUY 8°0=3INBIYYA Q@ o]
0YY ¥£23°0=3SYH4 o

60




deviations are larger for lower values of k, but improve as
the SNR increases. Thus, for large SNR's, consider that to
be 50 (17 dB) and abcve, the benefit of the simpler algo-
rithm forms in Table I can be used to an advantage (less
computation time). The same is true for the ML approach
(see Table II). The variance of these estimates is shown
in Figure 11.

Figure 12 is a plot of the estimates of five phase
angles obtained with a SNR of 17 dB. They range from 0.2
radians (11.5°) to 1.4 radians (80°). No significant dif-
ferences in the pattern are observed. A small discrepancy,
however, had to be fixed in this particular plot; the phase
estimate é(r4) for 6 = 1.4 radians made by using four sub-
intervals had a negative sign. This occurred both in the
MAP and the ML test. However, it cannot be inferred that
the estimator is more sensitive as the phase becomes larger.
The variance of these estirates 1is shown in Figure 13. Both
Figures 11 and 13 seem t¢ . afirm the theoretical prediction
of Figure 7: improve. performance as k (and SNR) -» «.

A test to check the effect of a smaller a priori phase

. 2 . . .
variance 07 was also run and is shown in Figure 14. The

6
variance was chosen to be 0.274 rad2 (the square of the

test phase). A slight improvement was obtained with respect
to the curves of Figure 10. The comparison can be made more
easily by looking at the estimates variance shown in Figure

15. Here, the improvement is more obvious for the lower

values of k, and in particular for the 10 dB curve; that is,
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for the estimates obtained with the smaller SNR used. This
seems to confirm the discussion pertaining to Eg. (4-90),

that estimates from noisy measuremecnts are more dependent

on the a priori information, a useful characteristic of the MAP
estimator. Similar tests werce alsc run to verify the ML
algorithms, and are discussed in the following section.

Simulation Results for the ML Estimator. The ML csti-

mator simulation is a series of tests performed on Lg.
(4-48), similar to the ones performed on the MAP estimator.
The main difference lies in the straightforward computation
given by the inverse tangent form of Eqg. (4-48). Here, no
a priori information (phase variance) is used. The results,
shown in Figures 16-19, are surprisingly close to the MAP
results already discussed, especially as k increases. Thus,
the ML approach can be used to advantage when the signal-
to-noise ratios are high enough to perform nearly as well as
the MAP estimator. From these results, Figures 10-19, it
can be seen that high enough may be 10 dB and higher. Thus,
given SNR's better than 10 dB, the ML algorithm of Eqg. (4-48)
seems to be a good estimator. Its use, when warranted, has
the advantage of avoiding solving equations of the form of
Eq. (4-41) which are time consuming. The MAP estimator,
on the other hand, is more uscful under noisy conditions,
where the estimator weights moré heavily on the a priori
information.

In the analysis presented in this chapter, the ultimatec

noise limited condition was assumed: that of the detecter.
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In reality, and particularly for low light levels, when the
signal~-to-thermal noise energy ratio is indeed very large
as may be the case of the CC devices, then the effects of
the signal shot noise predominate. Therefore, it is neces-
sary to consider the predominant shot noise case in order
to have a more complete analysis. When the phase 8 is the
only random parameter in Eg. (2-9) and consequently in Eq.
(4-23), the problem can be treated in the Poisson context.
An explicit use of the Poisson statistical description of
shot noise, ignored by Wyant, will be the basis of the

developments of the next chapter.
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V Phase Estimation in Shot Noise

When detector thermal noise is negligible, the process
is signal shot noise limited. For a multimode field (Ref 2:
87-94, 212), the process is well modeled as having condi-
tionally Poisson statistics. When the field is single mode,
then it is governed by Laquerre (Ref 2:304) statistics and
will not be considered here. The analysis is identical to
the one made in Chapter IV after Eqgs. (3-32) and (3-33).
For multimode detection, the counts rj in the observation

interval (tl,t +T) are independent and Poisson distributed

1
when conditioned on the field intensity (Ref 2:295). The
density function of the observables in (tj,tj+r) conditioned
on 8 is the probability density of the events (photons
received), assuming that all the events equal the observa-
tions (photoelectrons produced) in each observation sub-
interval t. Therefore, the density function of the shot

process 1is

rJ
TP VI
P[NT rle] 7 ¢ fr.le ' (5-1)
] J
where t.+T
E[r(t)]
., = e § I 5-2
My g ( )
t.
J
The observation r(t) has the form
r(t) = s(t,8) + q(Ksn(t) + Ab + Xd(t)) ’ (5-3)
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where the noise count (photon) rates have the following
statistics: (1) the signal shot noise Asn(t) is a non-
stationary, zero-mean process with covariance A (t)§(t-t');
(2) the background is assumed constant and infinite with

. . -_ __ 1 - t .
correlation function Nobé(ra ry )6 (t-t') and a stationary

count rate A, = NobBoDOn/hfo, where NOb 1s the spectral

b
background noise strength, BO is the optical bandwidth and
Ds is the number of spatial modes (Ref 2:212,213,228); and
(3) the stationary detector dark current has dc content Ad

and covariance kdé(t—t').

Maximum A Posteriori and Maximum Likelihood Estimates

With the above conditions established, the MAP and ML
phase estimates can be found using Eg. (5-1) as the starting
point. Thus, Eq. (5-1) becomes

r,
J
(sj(e) + (Ab+Ad)T/k)

r.!
J

f (r.le) =
rjle ]

eXP[-(sj(e) A T/RT . (5-4)

In a manner analogous to Eq. (4-14), the observation vector

r has a conditional density function given by

k
fEIG(EIO) jzl frj|9
Y.
_ ﬁ (55(0) + (A +dg)T/K) 3(
l5=1 Ty |
k
exp|- jil (sj(e) + Qg T/k]. (5-5)
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Unlike Eq. (4-14), Eq.

(5-5) contains a constant noise term

(Ab+Ad)T/k that represents deviation from ideal behavior.

Use of Eg. (5-5) in Eq. (3-32) yields the MAP estimator
equation
T
k Y. 9s. (8)
.Z s.(6) + (& +A ) T/k ‘ge - J[ g% s(t,0)dt !
=1 3 b "a d o
+ F(6) = 0 , (5-6)
where the substitution
t.
J+1 T
ko 8sy(8) Kk 5 s(t,0) .. _ 1 3s(t,0) ..
X - Z ~n . dt - - —— dL
L 30 L 90 g q 90
j=1 i=1
t. (0]
) (5-7)
and the definition of Eg. (4-26) were used.
Use of Egs. (3-25)~(3-27) and (4-24) in Eg. (5-6) with
T 3
.f 56 s(t,6)dt = 0, where s(t,9) is given by Egq. (2-9),
0
yields the MAP estimate
k [a.sinb (r)+BR.cosl (r)Jk/2n
I r. 1 — J = —_—
. J ~ _ . 3 . .
j=1 [ajcosO(E) 6j31n£(£)]k/2n+(a+1b+1d)/b
- F(6)y = 0 , (5-8)

where the substitution (Ref 2:113) (ib+id) = q(Ab+Ad) was

made to convert constant photon count rates to dc noise

current. The ratio
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is the fringe visibility and depends on the radiance of the
source. The dark current id is usually negligible.
Equation (5-8) is the MAP discrete estimator of phase
measured under Poisson shot noise conditions. It can be
reduced further under special conditions, but before
specializing its results and following the practice of
previous sections, Egs. (5-6) and (5-8) can be put in the
form of continuous waveform equations. Thus, in the limit

as k becomes very large, Eq. (5-6) becomes (Ref 2:298)

T T

r(t) s (t,0) 1 s (t,0)
-/” S5TE,0) + (ig+igl  av dt - 3 '/~ 36 dt

0] 0]

L=

+ F(6) = 0 , (5-10)

and the MAP phase estimator of Eq. (5-8) becomes

T

1 '/. r (£) cos (wt+5) dt - F(8) = 0 .(5-11)
d 5 sin(wt+0) + (a+i, +i4) /b

The first case to be considered is when the fringe
visibility is approximately unity. This is more or less
what is found from the output of the shcaring interferometer,
as can be determined from Egs. (2-10) and (2-11). Thus,
from these two equations, a/b = 0.711; so, (a+ib) ~* b, con-
sidering the presence of a small background current. Thus,
by setting (a+ib+id)/b = 1, Egq. (5-8) can be transformed

using simple trigonometric idcentities (Ref 11:225-241) into
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‘ K _ s
£ r.{tan[sin l(u./VE? + g?) - 9(r)]
| j=1 I 373 j -
. R -1
+ 2ﬂ/[(ajsin0(£) + BjcosO(E))/k]}
- F(0) = 0
for y = id ~ 1
and y >> i, , {5-12)
where the substitution
-1 L - ! bl
tan (uj/Bj) = sin l(aj/Vaj + Bg) (5-13)

was made to avoid dividing by zero as some Ej's are found to
be. Equation (5~12) is therefore the discrete MAP phase
estimator given Poisson shot noise conditions and equal
amplitude dc and ac components. It is noteworthy to chserve
that if k is large, the second term in Eg. (5-12) can be

neglected so the estimate becomes approximately

k —
I r.cot[sin l(a./V&? + 82) - 0(r)]
=1 J J ] 3 -
j=1
- F(6) = 0, k = large . (5-14)
Finally as k becomes very large, from Eg. (5-11), the con-

tinuous measurement estimate is found to be
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T

. i 5
/ rit)cot (52« Dat - qr(e) = 0
0
for Yy + id = 1, v >> id . (5-15)
The second case to be considered 1s when (a+ib+id) = 0, dc
components blocked (capacitively perhaps). TFor this case,

Eq. (5-8) becomes

k a.sin@(g) + 5,cos§(£)

ooy, —a—— - F(3) = 0. (5-16)
s = 3. G (1) - R in G

j=1 ujcoso(k) LjSln“(E)

Equation (5-1¢6) can be also transformed using simple trigo-

nometric identities into

.-

- — /__—___ ”~
r.tan[sin l(B./Vu2 + 52) + g (r)]
j=1 J J J 3 -
- F(6) = 0 , dc blocked. (5-17)

This is the discrete MA# phase estimator given Poisson shot
noise conditions and dc components (signal and noise)
blocked. In the limit as k becomes large, the continuous
measurement estimators found to be from Eqg. (5-11)
T
./. r(t)cot(wt + ?)dt - q F()y = 0 ,
(o}
dc blocked . (5-18)
The last casc to be considered is for a very low fringe

visibility such that (a+ib) »» b. This condition is given
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under a strong infinite background competing with the source
(target), and is referred to as background limited. Thus,

for background limited conditions,

(atip+ig) /b > [ajcost(z) - sjsina( ) I1K/ 27

and Eq. (5-8) bccomes

r.[a.sin@(r) + 8.cosd(r
5Le r B (r)]

[

j=1

21 (a+i, +i
Fl{g) = 0 . (5-19)

Equation (5-19) 1is of the same form as Eq. (4~36) with
the term 2n(a+ib+id)/kb in place of nNo/qkb. Thus, an eguiv-
alent noise can be defined as Ny & 2q(a+ib+id). The phase
estimator in multimode shot noise under background limited
conditions is thus the same as the estimator obtaincd in

the Gaussian analysis with equivalent noise 2q(a+ib+i1).

C

Therefore, if F (i) = - 0/05, the MAP estimate is after
Eq. (4-39)

kbog k .

Fr)y s ———— {—- L A.r.cosi(r,
= 2n(arlb+1d) =1 j
k ~
- % a.r.sint (r), ,

j=1

for i, »>> b , (5-20)

b
and the ML estimate 1s the same one «aiven by FEqg. (4-48).

In order to illustrate how Egs. (5-12) and (5-17) change
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with k and to compare them to Egs. (5-20) and (4-48), some

examples are given in Tables IV and V.

Performance of the Phase Estimators in Shot Noise

Considering that the phase estimates found in the
Gaussian noise analysis are asymptotically unbiased for
high SNR, the Cramer-Rao inequality seems to be also an
appropriate measure of performance of the shot noise phase
estimator under the same SNR restrictions. From Eqs. (4-78)
and (5-6), the MAP-CRB bound is given by

2

3 -1
_ ol 36 558 _ar(e) || )
CRB = 13 j-E-l N R ORI EV 3 || . (5-21)

By making the substitutions of Egs. (3-25) and (4-85) into

Eq. (5-21), the bound transforms into

j rbT k [%§§1n9+8jcose]2k/2n
CRB = ‘Elifa jil [ajcose—sjéfne]k/2n+(a+ib+id)/b
Q-l
- E[aFa(ee)] (- (5-22)

For Gaussian phase, Egq. (5-22) becomes

. 2
SR I 2 I “ij“ie;'iime’, N } .1l
'2nq j=1 (ajcose—sjs;n )+2n(a+1b+1d77 b og’
-1
A bT 1
- {inq Ay * _7}
o
0
%
= 3 ' (5-23)
1l + oebTAo/an
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TABLE IV

Examples of the MAP Phase Estimator Form
Under Multimode Shot Noise Conditions

DC Blocked, Eq. (5-17), F(8) = - 8/02
k 8(ry ... 1)
2 A . i
3 ggl{r cotd(r) - (ry+rj)tan(é(r) + g)}
2 N ~
4 ogl(r +ry)cotd(r) - (ry+r,)tanb(zr)}
T
© og .f dt r(t)cot(wt+d)
0
Background Limited, Eq. (5-20), F(8) = - 8/07
k G(r1 .o rk)
Y A 3 . ~
3| 3B (2r -ry-ry)kjcosé(r) - F(r,-ry)k;sind(z)
4 /2 (rl-r3)klcos§(£) - V2 (r2-r4)klsin§(£)
T Fal T ~
o | 1f r(t)coswtdtlk cosé-[ f r(t)sinutdtlk_siné
0 d 0 d
kbo 2
x, & -
1 27 (a 1b+1d)
2
. A boe
q q a+ib+1d)

8l




T g m— —

TABLE V

Examples of the ML Phase Estimator
Under Multimode Shot Noise Conditions

DC Blocked, Eq. (5-17), F(8) =0

tane(r1 oo rk)

r, V3- tanf (r)

T2*T3 /3 + tanB(x)

Vll+r3
r2+r4

T ~
fr(t)cot(wt+9)dt = 0
0

Background Limited, Eq. (4-48)

tane(rl .o rk)

/3 2rl-r2—r3
3 r

T
r(t)coswtdt

T
r(t)sinwtdt

o™ o™
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TABLE V

(Continued)

Yy =1, id = 0, Eq. (5-12), F(8) =0

tane(rl .o rk)

ry/(sind (x)+1.11) - r,/(sinf(x)-1.11)

rz/(cos§(£)+l.ll) - r3/(cosé(£)-l.ll)

T ~
Jat rtrcot 52 + 1y = o0
0]
83




— - - =

- e e

where Ao is the expected value of the sum with respect to 6.

For (a+ib+id) = b and k very large, Eg. (5-23) reduces to

(Ref 2:300)

og
) 2 T . (5-24)
1+ cebT/q

The ML bound is on the other hand (og large!

Vople) 2 g% , (5-25)

the reciprocal of the collected count energy. The perform-

ance of Eq. (5-20) as given by the CRB bound is, from Eq.

(5-22) with F(8) = - e/og,
k (o, 51n6+8 cosb) k/2n -
CRB = {%l~ [ y —d ] + 35$ . (5-26)
(a+1b+1d)/b o4

Invoking the identities of Egs. (4-29) and (4-30), Eq.

(5-26) simplifies to

-1
2 X
CRB = J__ v’ x T al 4+ J;: ) (5-27)

2 v . 3 2
'4n q(a+1b+1d) j=1 Og

Finally, the definitions of Egs. (4-59), (4-60) and (4-77)

can be used to write the error variance as

2 °§
Ele,] 2 PP P ‘
1+ ane/[Zﬂ q(a+1b+1d)vk]

(a+ib+id) > b , (5-28)
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or in the limit as k becomes very large

2
. 2 % .
.i.m. E[£r] > v iy >> b .(5-29)
+ ©

2 . .
1+ ane/q(a+1b+1d)

Because of the requirement that ib >> b, small SNR, the
error is limited by the variance. Furthermore, the actual
error variance may be much higher due to the inherent SNR
restrictions needed to apply Eq. (5-22). For the ML esti-
mate, Eg. (5-28) becomes

2n2q(a+ib+id)

B ’ ib >> b, (5-30)
a .

v_. (e

ar(€r) 2

r

and Eq. (5-29) becomes

q(a+ib+id)

|e>
(o]

.i.m. Var(er) 2 5 3 ¢ ip

1 >b . (5-31)
k » a a

Equation (5-31) tells that the ML estimate obtained from
Eq. (4-48), when used as an approximation for background
limited conditions, results in a bad estimate.

The foregoing discussion is based on Wyant's assertion
{(Ref 16:2624) that for shot noise limited conditions, a
better method for measuring phase is as given by Eq. (5-19),
F(6) = 0, easily implemented Ly letting k = 4. (See Table
V, Background Limited.) The performance of Eq. (4-48)
analogous to Eq. (5-19) for ML, was proven to be exclusively
SNR dependent. The equivalent noise 2q(a+ib+id) also makes
the result of Eq. (5-19) SNR dependent, and the estimate is

likely to be erroreous. (See Eg. (5-31).) A better
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equation is given also in Table V for y =~ 1, but the solu-
tion is not so straightforward. The analysis performed by

Wyant gives an error variance (dark current neglected)

b owp? = 1, (5-32)
2
4 I r.
Y rj

i=1

Var (E

)

r

where the phcton counts can be evaluated from external
parameters. Comparison of Eq. (5-32) to Eg. (5-30) using

Eg. (5-9) gives the following inequality:

nz(a-i—ib)2 4n2q(a+ib)
—x 2 % ' (a+ib) >> b . (5-33)
2 2 2
4b D b"T k I «a.
j=1 j=1 3

For the particular case of k = 4, Eg. (5-33) yields
: q -
(a+1b) 2 T(rl+r2+r3+r4) > b . (5-34)

From Egs. (5-32) and (5-9), Wyant's approach is found to be
also SNR dependent. Any good performance thus depends on

the condition that

(5-35)

e

i5 rj >> (a+ib) .

From Eq. (5-34), obviously Eg. (5-35) is not true.
The foregoing results clearly indicate that phase esti-

mation requires a strong signal regardless of the noise

process. It can be noted that under low light level condi-

tions, the SNR constraints are more difficult to meet, and

large errors may be expected. With these conclusions, the
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analysis of phase difference estimation from measurements
from a single detector are completed within the scope of
this thesis. Given the added complexity of Eg. (5-8) and
time constraints, a simulation as performed in Chapter IV
is not included. Estimation of the actual phase components
$ in Eq. (2-3) will be performed in the next chapter using

the measurements of the detector array as a whole.
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VI Joint Processing of Array Signals
for Wavefront Estimation

The problem of phase difference estimation was
addressed in Chapters IV and V. Ideally what is desired
are the actual phases at specific points across the aper-
ture rather than slopes between points. The methods usually
employed to find these phases consist of mappings of data‘
given by the measured wavefront difference functions A¢(fa)
and the gecometry of the data points. These mappings use the
concepts of least squares fitting and are discussed by
Fried (Ref 1), Hardy et al (Ref 4), Hudgin (Ref 5), Rimmer
(Ref 10), and Wyant (Ref 16) among others. The general
result given by these mappings is an average of phases and
measurements about a single point, requiring a recursive
solution.

A different approach will be used in this thesis which
uses the fact that the phases across the aperture are spa-
tially correlated due to slow spatial variation of the
wavefront, and the assumption that a spatial covariance
matrix is available from experimental measurements. There-~
fore, by jointly processing the outputs of the two detector
arrays discussed in Chapter II, a phase estimate can be )
made in real time. Because of the a priori information
supplied by the covariance matrix, an improvement is expec-
ted over mappings of data points.

The criteria of Maximum A Posteriori estimation will

be used in this chapter, but the algorithm so obtained will T
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be in continuous waveform rather than discrete counts.
Because of the difficulty in applying the MAP theory, sev-
eral assumptions need to be made in order to simplify the
algorithm derivation. The problem will be worked out in

the Gaussian context or second moment models only, where
detector thermal noise is the predominant noise source. The
noise waveforms from each detector are samples from indepen-
dent white Gaussian processes with zero-mean and strength
NK/Z. The subscript « will be used to index the K(th)
detector. The phases ¢(r,t) will be assumed to be stepwise
constant in the interval sequence (O, T, 2T, ...) as pre-
sented in Chapter I. The covariance matrix is, therefore,
constant in each interval, but needs to be updated every T
seconds. This is the sequential problem which is beyond

the scope of this thesis. A suggestion, however, will be
given later for sequential estimation by quantizing 0(r,t)
when it is continuous in time. The final assumption to be
made is that of a jointly Gaussian random phase distribution
over the aperture. The time-space problem fitted to the

above description is one of multiple channel, multiple

parameter estimation in Gaussian noise.

Multidimensional Estimator Formulation

Derivation of the required time-space estimator equa-
tion will be made in this section. The next section will
treat the specific application to the shearing interferome-
ter output. So, the multiple observation model can be

written in vector form as




-

E(t) = E(tl_a_) + I_‘_(t) ' 0 £t<T, (6-1)

where r(t) is a column vector of the outputs from a two-
dimensional detector array, indexed with a single subscript
l < k £ m A vector of phase parameters a over the aper-
ture, indexed also with a single subscript 1 < p £ n, is to
be estimated jointly using all available outputs. The for-
mulation needed for array processing is a direct extension
(th)

of the single element case. Let the output from the «

detector be
r.(t) = s (t,a) +n (t) . (6-2)

The noise statistics are given, from Eqs. (4-2)-(4-6), as

E[nK(t)] = 0 (6-3)
and
2kT
E[nK(t)nK(t')] = ] S(t-t")
K
W
S (6-4)

It is assumed that the noises in the detectors are statis-
tically independent of each other. The detector outputs r,
are also statistically independent as was shown in Egs.
(4-9)-(4-13). Therefore, an array output vector can be

defined as

] ’ (6"5)
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and the conditional density of the observations given the

phase vector is found from

m

f_, (Rla) = nm f£_ , (x la) , (6-6)

B.l_a'_~ K:l —K‘g_ K
where fr ,a(gKlg) is given by Eg. (4-14) The likelihood

iR Rl
function defined by the ratio
A
A2 [1nf5|i<glé>]/[1nf5<g)] (6-7)
is therefore given by
(+)
2 m k r.
A= 2k ;g [.;L_w s{V @) - - <sf“"<g))2]-
k=1 j=1 “ ] K J

(6-8)
Equation (6-8) must be maximized by the proper choice of
all the elements ap in a. Since the phases across the aper-
ture are assumed jointly Gaussian and spatially correlated,
they can be represented in a different coordinate system
where the new elements a, are independent Gaussian random
variables, each with density
£ i(ai) - [2n0§i]1/2exp[—a§/20§i] : (6-9)
Beginning the estimator derivation with Eg. (6-9), the MAP

estimate of a; can be obtained by maximizing {A + 1nfa (ai)}

i
with respect to a. The result in vector form is
- T
2, k 9s.(a) _ a,
29k 3 D= yliy, -s.@) - =2 = 0 , (6-10)
T .- da., — =j =] = 2
j=1 j o
i
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where W is a positive definite diagonal matrix of terms W _.

To convert Eg. (6-10) to the actual parameter system, a is

expanded into a set of

a &
P

and

-a- =

P
orthogonal unit vectors Qi such that
N (p)
1.i.m, ¢ a.6:P (6-11)
N » @ j=1 i1
N
l.i.m T o a.é. {6-12)
N+ o j=1 i+i

where a; is obtained in a manner analogous to Eq. (3-14)

from

In the same manner, it

T
9s5(a)

da.
i

Equation (6-14) can be

notation
n 9s. (a)
5 ¢( ) I M
i=1 1 Ja
J P

2 (p)
= zl ap¢ip . (6-13)
p‘__.

is also true that

n 9s.(a)
= 1 = LU (6-14)
p=1 p

simplified by defining in vector

L (1) (m) .y |
asj (a) . asj (a)
Bal aal
T
= Q—i .
(1) (m)
asj (a) o asj (a)
i Ban aan 3
Loy . (6-15)
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By using Egs. (6-14) and (6-~15), Eq. (6-10) becomes

2 k
= 29k ;2 T -1 _
] T Cay jh) 52 @F (L - s@] . (6-16)

By using Eq. (6-16) in Eg. (6-12), the joint estimate is

2 N
a = XX him oz ool go97
N-»>® i=1 % 177
x -1
$ D.{a)W “[r. - s.(a)] . (6~17)
j=1 =J —J -] -

The covariance matrix is given by (Ref 12:222)

N

2 T
L 0a, 939
=1 i

K, (6-18)

l.i.m,
N » o 3

and is assumed to be known in the interval (tl,tl+T). It

is further defined by

[ N
Ky eee kg

k, % EBlaa’l = |: -. . (6-19)
knl kn

Therefore, the discrete joint MAP estimate of a is given by

N 2
am = Mk,
J

N tx

-1
D.(a)W .~S. t, £t < t,+T .
Dy (a)W [53 84 (a)l ., t <

1 1

-1&

(6-20)
Equation (6-20) can be converted into a continuous form by
substituting for the definition of Eqg. (3~14). By observing

that, for a set f(t) of complete orthonormal functions,
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k
l.i.m.e I g.(t)g.(u) = &(t-u) (6-21)
k » o j:]_ J J
then Eq. (6-20}) becomes
T
a = 25af p_(t,g)v_fl[E(t) - s(t,a)ldt
o
for 0 st <T, (6-22)
where
- -
3s, (t,3) Is  (t,a)
aal aal
D(t,a) A . .. . (6-23)
H asl(t,g) Bsm(t,g)
i aan 3an ]

Equation (6-22) is the joint MAP ustimate from a continuous
measurement of a Gaussia: randum vector a observed in Gauss-

ian noise. This is the result that will be used in the

forthcoming developments to process jointly the outputs of

a shearing interferometer. Equation (6-22) can also be
obtained in a manner analogous to the single detector by

performing a correlation~-summing operation as shown in

| Figure 20 (Ref 14:367,452,453).

Wavefront Estimation from the Shearing Interferometers

The output fields of the iﬁterferometers at the focal

planes are received and processed by two separate detector

arrays, one each for the X and Y sheared fields as depicted

in Figure 2. Therefore, it will be convenient to keep

i g m—————
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Fig 20. Correlator-Summer Model for Joint Processing

track of the observations by use of appropriate subscripted

notation. Define

A
wKz(t) = xKl(t,e) + sz(t) (6-24)
z (&) & (£,8) + n_,(t) (6-25)
'3 Yg 't KL !
(th)
where wKQ(t) and sz(t) are the outputs of the «{ detec-

tor in each of the x- and y-arrays. The subscripts « and &
index the rows and columns respectively. For any one detec-

tor, the signals can be written as
y(t,0) = a + b sin(wt + 6(y,))

for X, fixed, (6-26)
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and

' x(t,09) = 4d + ¢ sin(ot + e(xa))
for Y, fixed, (6-27)

where the difference functions are, from Egs. (2-3) and (3-1)-

(3-5), given by

N =

8(x,) {¢(xa - Msd,ya) - dlx, + Msd,ya)} (6-28)

f

N =

8(y,) {¢(xa.ya - M, ) - o(x .y + Msd)} . (6-29)

Sa

Further notational simplification can be made by defining

o(x7) = dlx, - Mg ¥a) (6-30)
o (xh) 2 o(x, + Msd,ya) (6-31)
sty & o (x /Y, = Msd) (6-32)
s L ey, + M) (6-33)

so that Egs. (6-26) and (6-27) can be written as

- +
a + b sin(wt + oly ) ; oLy ))

y(t,8) =
for X, fixed, (6~34)
and x(t,0) = d + c sin(wt + 9 (x ) ; ¢(x+))
for Y, fixed. (6-35)

Equation (6~22) can now be applied using Egs. (6-24) through

(6-35) to perform the joint estimate of the wavefront phases
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using two plane detector arrays properly interfaced to

couple the x~ and y-measurements with the same wavefront
points. But the two-array configuration must be set up
before proceeding to perform the joint phase estimation.

Configuration of the Detector Arrays. The need for the

use of two detector plane arrays for actual phase estimation
is a conseguence of the structure of the difference func-
tions in Egs. (6-30) through (6-35), obtained from the use
of lateral shearing instead of radial shearing interferom-~
etry. As is the case in the approach of data mappings, pro-
cessing of the observations r(t) requires a specific detec-
tor arrangement. In order to make full utilization of the
information collected, the detectors (and the arrays) must
be arranged so that each wavefront point be measured by as
many detectors as possible in order to provide a strong
deterministic relationship between the 1 :asurements over the
aperture. All other coupling is provided statistically by the
covariance matrix of the phases.

In order to provide redundancy of measurements, the
best possible detector arrangement is as shown in Figure 21.
This arrangement allows each phase point to be measured by
four detectors, two from each one of the arrays, and has
the advantage thet only one reference phase is required to
determine the entire phase distribution. It is assumed that
such phase point is measured by another means or is set
arbitrarily equal to zero., The X's and Y's in Figure 21

denote the detector locations and the ¢'s denote the phase
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Fig 21. Arrangement of Two Detector Arrays to Measure

{(m+1)x(n+l) Phase Points with (m+l)xn X- and

mx(n+l) Y-Detectors
points being measured. Except for the edge phase points,
each phase ¢ , 1is measured by detectors x . Xeo1,87 Yeu!
and y, =17 ¢K2 being a common phase point of the four dif-

o

ference functions BKQ(xa), BK—l,Q(xa)’ aKl(ya)’ and em,l-l(ya)'
The grid shown in Figure 21 is formed by overlapping the two
arrays to indicate the relative positions of the X- and Y-
shear detector. The corresponding detectors X, 9 and Yo are
not located at the same point on the field. They are dis-
placed 45° instead so that both can measure the same phase
¢Kl. The direction of the shear has been chosen from right
to left and bottom up to correspond to the notation adopted

in Egs. (6-34) through (¢-37). 1In this arrangement the
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detector spacing has been chosen so that

- +
Sy ) = Oy, ) (6-36)
- +
and ¢K2(x ) = ¢K,2+1(x ) (6-37)
in Egs. (6-30) through (6-35). The cdetectors must then be

spaced 2M shear distances sq apart (sdx and sdy may not
necessarily be equal). This is depicted in Figure 22 for a
column array.

In general, for a non-square array of phase points, the
number of detectors is different in each array. Thus,
referring to Figure 21, there are [m+l]xn X-~detectors and
mx [n+l] Y-detectors, and [m+l] [n+l] measured phases. The

ratio of detector to phase points is

[m+l])xn + nx[n+l}
[m+l]lx[n+l]

and ranges from unity, when a minimum of four phases are
measured with two each X- and Y-detectors, up to the value
of two, in the limit when a very large number of phase
points are being measured. Thus, in the best possible
arrangement of Figure 21, the number of detectors required
tends to double as more wavefront points are measured simul-
taneously. With these preliminaries completed, derivation
of the algorithm for wavefront estimation by jointly pro-
cessing the two detector array outputs can be initiated.

Joint Wavefront Estimation with Two Detector Arrays.

The observations r(t) can be arranged in a column vector of
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Wavefront Detector Measurement

Y-Shear ‘j:::ﬁ—-zK(t): (¢K+1—¢K)

2 (€): (9, =0)

Fig 22. Arrangement of Detector Column Array for
Joint Processing

dimension (m[2n+l]+n), using the notation of Egs. (6-24) and

(6-25). Thus,

r(t) = [zll(t),wll(t) oo zmn(t),wmn(t)

T Y
.o wm+1,n(t)] ' (6-36"
where zKl(t) and wKz(t) are the observations with signal
components given, after Egs. (6-34) through (6-37), by

¢v<+l,9. B ¢<£

ka(t,g) = aKl + bKlsin(wt + ) )
for 0 <t < T,
l <k £m,
1 £ 2 £ n+l, (6-39)
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¢K,2+1 B ¢K2)

and X

o (E0) =+, sin(wt +

for 0 < t

A

T,
1 < k < m+l,

L2 <n. (6-40)

The arguments (x+) and (y+) used in Egs. (6-34) and (6-35)
are dropped from Egs. (6-39) and (6-40) since the ambiguity
is taken care of by the subscripts «+1,% and «,%+1l, and

+, _ +
because ¢K2(x ) = ¢K£(y ).

The phase vector is also a ([m+1][n+l]) column matrix

T

O = Loy -ev b wee O 1, (6-41)

P4 m+l,n+l

and has a ([m+1]) [n+l)) symmetrical covariance macrix with

terms from k to k The noise covariance
11,11

m+l,n+l;m+1l,n+1°
matrix, on the other hand, is (m[2n+l]+n) diagonal (noises

were assumed spatially uncorrelated) given by

erl W

=
10

W= . . (6-42)

1O
2

L Mm+1,n_
where the N's and M's make reference to X- and Y-detector
noises respectively. With the observation and covariance
matrices defined in Egs. (6-38) through (6-42), Egs. (6-22)
and (6-23) can be applied directly to perform the joint

estimation of the vector ¢.
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Thus, the product W *[r(t) - s(t,$)] in Eq. (6-22) is

a (n{2n+l]+n) column matrix with general terms

1

s [z _,(t) =y _,(t,9)]
NKQ KL k&'
for 1 < ¥ £ m,
1l < 2 £ ntl, (6-43)
and
1w ) - x, (6,0)]
M KL KLY
KR
for 1 < v £ m+l,
152 <n (6-44)

The signal derivative matrix is ([m+l] [n+l])x(m[2n+1]+n)

dimensional given by

(o, (£,0) 0%, (£,0) 3% 1 p(Erd)

3017 309, o 909y
D(t,¢) = : : " :
dyyp (60 Bxpy(6,0)  ax (E,0)

4 . o e
a¢m+l,n+l 3¢m+l,n+l a¢m+l,n+l

- —

(6-45)
By carrying out the matrix multiplications of Eg. (6-22),

(th)

the MAP estimate of the pg phase is found in general

terms to be given by
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. m+l n+l‘ m n+l 2k i ayKR(t,¢)
6 = 1 g ¢ B2 / —_—[z  (t)~y ,(t,9)]dt
P 5y 3=1le=1 221 Nip A 9;5 xE LA
T
m+l n 3% o (t,0) l
+ I I — e w_, (t)=x_,(t,$)]dt; .  (6-46)
k=1 z=1£ 5 <k AT

Finally, when Egs. (6-39) and (6-40) are used in Egq. (6-46),

(th)

the general pqg member of the ¢ vector of Eg. (6-41) is

obtained. The result is given by

m n+l bK

. A 2
= pA I — [k -
¢PCI k=1 g=1 NKQ [ pgixk+l, 2 kPq,Kl]
T ~ A
$ - ¢
K+1, R KR
f sz(t)cos(wt + 5 ydt
(0]
+ m;l g CKQ [k ' -k ]
=1 2=1 MKQ pg;i x,+1 pd, kL
T ~ ~
) -9
./. Wy (t)cos (wt + K'l+§ KR’)dt
(0]
for 0 £ t £ T,
1l < p £ nmtl,
1 s g £ ntl, (6-47)

Equation (6-47) is the joint Maximum A Posteriori phase
estimator using measurements of two orthogonal, lateral
shearing interferometers and their detector arrays. The
phase estimate distribution over the aperture is shown in

Figure 23.
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Fig 23. Phase Estimate Distribution Over the Aperture

The algorithm given by Eq. (6~47) is applicable only
when the phases ¢ being measured are jointly Gaussian ran-
dom variables and the a priori information represented by

k. is available. The distinction between $p

and in
Za ¢rs

9
Eq. (6-47) is made, observing the structural form of Eq.

(6-46), by the covariance terms k and k only,

pd,ij rs,ij

where i and j take on all values from 1 to m+l, and 1 to
n+l respectively. Therefore, the joint phase estimates are
weighted accordingly by the a priori information. This
will be further explained in a forthcoming example.
Solution of Eg. (6-47) is to be obtained recursively

with numerical methods on a digital computer. However, to

104




illustrate the estimator, Eg. (6-47) can be implemented with
a heuristic correlator-summer of considerable complexity as
will be seen in the following example.

Illustrative Example. The simplest example to illus-

trate a hardware implementation of Eg. (6-47) is given by
the joint estimate of a wavefront at four locations using
two (2x2) detector arrays. The arrangement is shown in
Figure 24. The notation is so chosen for simplicity.
Detector Y2 corresponds to Yl2 and phase g corresponds to
¢22 in the notation of Eq. (6-47). It will also be assumed
tﬂat the noises are of equal strength NO and the signals
have equal amplitude /5@;7?. With the problem so defined,

(th)

the p phase estimate is given, from Eq. (6-47), by

T ~A
~ 2E ‘ $,-¢
_ 1 a _ 3 71, .
¢p = ﬁ; - I(kp3 kpl)./‘zl(t)cos(wt + 5 ydt
0

+ (kn4—k ) zz(t)cos(wt +

p2

wl(t)cos(wt + 5

w, (t)cos (wt + =)dt

2 (6-48)

+ (kp4—kp3)

[

+
=~
e
1]
0
L
Hv
o\'_] o'\,'_a o\e

~

where any ¢r is set as the zero reference. Equation (6-48)

can be implemented with a correlator-summer as shown in
bimbs A

Figure 25, where cos(wt + —i§~l) is denoted by n ¢i-$j. The

structure of Figure 25 is a feedback system in which the
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Fig 24. Phase-Detector Grid for Joint Processing of Four
Detectors to Estimate Four Wavefront Phases
detector outputs are weighted by the covariance terms so
that each phase estimate has a contribution from each meas-
urement. Three feedback lcops from the estimate outputs
$2, $3 and 64 are returned to the detector inputs. The
estimate $l does not provide any feedback for being the
starting point of the spatially recursive estimation. The
phase output $3 has been arbitrarily set as the zero refer-
ence.
To better understand how this formidable structure

weighs the measurements, or better yet, what Eq. (6-48)
really does, the underlying mechanism is shown in Figure 26.

Here, the phase points have been replaced by the covariance
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Fig 26. Underlying Mechanism to Estimate 9y and 9,




-~

terms of ¢p with respect to the other phases. The detector
locations have been denoted by their measurements z(t) and
w(t). Figure 26-a shows the mechanism involved in esti-
mating ¢l. Each phase location has the covariance term
involving ¢l and the phase at each point; this is the mean-
ing of the arrows. The operation involves taking pairwise
the difference between the covariance terms at all points
and multiplying by the measurement made between each two
points {this means the output of the integrator). Thus,
the difference between k and k

. 11 14
because there is no detector in between. In the same man-

is multiplied by zero

ner, Figure 26-b shows the same mechanism used to evaluate
¢3. Here, the covariance terms are k33, k31' k32 and k34.
This can be generalized for any number of array elcments.

From this example, it is evident that the algorithm
indeed provides a means for jointly processing spatially
correlated phase measurements. It also implies a simultane-
ous evaluation of all phase points and a recursive substi-
tution. The difficulty involved in solving Eq. (6-47)
numerically is also evident due to the redundancy provided
by the feedback loops. Tﬁerefore, such a solution goes

beyond the scope of this paper.

Estimator Performance

The performance of the estimator of Eq. (6-22) is more
easily described in terms of the Cramer-Rao bounds, provided

that the signal-to-noise ratio is large and biases are
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negligible. Then, the lower bounds on the error matrix are

the diagonal terms of the matrix

x 171 (6-49)

Ry = k,II* Dy,

=B

adapted from a more general case given by Van Trees (Ref 13:
454)., Simplificaticn to the point of Eq. (6-49) is possible

because the matrix

o>

T
D_ (u,¢) f EID(t, )W DT (t,¢)]dt
(6]

>3

(6-50)

is constant over (O,T) for s(t,¢) defined as [a+bsin(wt+¢)].
To find the MS error bounds, the matrix operations of
Egqs. (6-50) and (6-49) must be performed. Carrying out
these matrix multiplications is a rather cumbersome task.
After some work, the matrix D (u,¢) is found to have a
diagonal band form with dimensions (m[2n+l]+n)x([m+1l] [n+1])
as illustrated in Figure 27. The five X's in each column

are civen by

d 3
p-1l,q ¢p-l,q qu
X IxX
v 2 (3 p.g-l —7§L911) (6-52)
p,q-1 ¢p,q-l ¢pq
110




Fig 27. The Form of the Matrix Qa(u,g)

] 2 9 2 o0X 2 X 2
_Z_<;329) : ( yg-qu) 2 <5_29> . 2 < g.q-l)
N N M

pq \°®pg p-1,q\ °%pq pa \°?pq p,a-1\ %pq

(6-53)
2 X X
pq pq -
i |33 53 (6-54)
Pd P+l " Tpq
)
2 pq  ¥pq -
N 7% ) (6-55)
pa p+l,q9 "'pq

The product Qa(u,g)ga is a ([m+l] [n+l]) square matrix. The

general term at location pg,ij is given by
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p-1l.,q 39 3¢
) )
b (g'q'lapq'>
P,q-1 ¢pq ¢ q-1

-1,

X 9X
+M_2_Tp_qa__eq_)k 1
pq \*®pq 2%p,q+1/ Pratli

oy

K
pq ° p+1,q) p*l.qi

N,y: 1

A
el
A

M,x: 1 <

A
o
A

Integration of the matrix
(6-56) gives a constant ma

location pg,ij is given by

2
b -1,

k L -
4Np—l,q p-l,q:ij 4M

ij

ij

n+1

=

[
A
Q

A

m+tl , 1 < g<n

n+l . (6-56)

=]
+
[
-
[
)
(S}
73

with general term given by Eq.

trix EaEa whose general term at

2
5, q-1

pPrg-1
2 2

2
b
+ J_ES + _B__Lg + _Bﬂ + _flil_,'

L L 1,

M
a "pg  Mp,g-1 “pa, i3

(6-57)
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The matrix D, is ([m+1][n+1]) square and p, g, i, and j are
bounded as in Eg. (6-56). Further evaluation of the error
matrix is to be done numerically to yield the diagonal
values of Ry defined by Egq. (6-49). This evaluation as
well as a numerical solution of Eg. (6-47) are not included
in this paper due to the difficulties encountered in under-
taking that task. This, however, does not discourage fur-

ther study since Egs. (6-47) and (6-57) are believed to be

correct.
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VII Conclusions and Recommendations

Conclusions
The purpose of this work was twofold: (1) perform a

discrete phase estimation analysis for a single detector
measurement, and (2) perform a joint phase estimation
analysis for multiple detector measurements. This work was
prompted by the need for improved processing techniques
directly applicable to shearing interferometry and wave-
front correction systems.

' The first workfront motivation was to determine in a
stochastic sense if phase estimation algorithms with the

simplicity of the form of

1 A-D

['_-] ’ (7"1)

$ = tan B=C

from Reference 16, intended for use with low level signals,
could be obtained using Maximum A Posteriori and Maximum
Likelihood estimation theories, and the conditions for which
they would give good phase estimates. A family of such
algorithms was found and is given by the ML estimator Eq.
(4-48), which is a specialized result of the MAP Eq. (4-36),
derived under the white Gaussian noise assumption. A simi-
lar result is also given by Eq. (5-8), derived under the
Poisson shot noise assumption, for the case of low fringe
visibility. It is shown, however, without empirical veri-
fication (computer simulation), that this algorithm form

will result in poor estimates under those modeling conditions.
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The performance analyses carried out in Chapters IV
and V (both theory and simulation) show that the only factor
affecting phase estimation performance is the SNR regardless
of the noise process involved and the technigque used. 1In
fact, the performance of both MAP and ML estimators is
asymptotically given by the reciprocal SNR with an appro-
priate scaling factor for the particular algorithm form
used (given k). Emphasis is made on this point to clear up
Wyant's implication that Eq. (7-1) might be free from the
SNR restrictions.

The estimators of Egs. (4-39) and (4-48) were verified
with a simple computer simulation with results presented
in Figures 10-19. The similarity of performance between
the MAP and ML estimators particularly for SNR > 10 dB
follows directly from the implications of Eqs. (4-91) and
(4-95), which predict the same asymptotic performance of the
MAP and ML phase estimators for large SNR, and the implica-
tion of Eq. (4-90), which tends to ignore a priori informa-
tion as the noise in the measurement decreases.

For a given SNR, there exists a tradeoff between algo-
rithm simplicity and algorithm performance of the discrete
estimators. The increased structural complexity as k
increases from k = 3 to infinity is illustrated with a few
examples in Tables I, II, IV and V. This complexity is
particularly noticeable in the Poisson analysis equations.
The return of using the more complex forms is an improved

performance as shown in Table III and plotted on a relative
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basis in Figure 9. The difference in theoretical perform-
ance between the worst (k = 3) and the best (k = «) possible
estimator forms is 1.65 dB according to the definition of
Eq. (4-76), and decreases quite rapidly as the number of
counts (k) increases. On the basis of this performance-
complexity tradeoff, the photon counting technique (k < =)
is suboptimal (but acceptable) with respect to current-
measurement (k = «) based phase estimation.

The second motivation of this work was the analysis of
a time-space problem intended to provide a joint estimate
of the phases across the aperture of the interferometer.
Such joint processing had not been addressed in the light
of MAP theory, where the fact that the phases were spatially
correlated could be used to improve performance. The algo-
rithm derived is given by Egq. (6-47) and is restricted to
the assumption of a Gaussian phase distribution. The
weighting between measurements is explicitly shown by the
covariance terms in Eqg. (6-47). The difficulty with this
algorithm is the mathematical form of simultapeous non-
linear integral equations for which a solution is not
readily available. The performance equations were carried
out up to the point of numerical evaluation, which is not
included due to time constraints imposed by the difficulties
encountered in deriving the algorithms. Thus, a direct
comparison to other estimators such as the one derived by
Hudgin (Ref 5) is not possible given the form of Egs. (6-47)

and (6-57).
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Recommendations

The study contained in Chapters IV through VI was
performed for the extreme cases of detector limited and
signal limited noise statistics. It is not unreasonable to
think that the intermediate cases are also encountered in
the reception of optical fields, where both thermal and
shot noise occur together. These noise processes are inde-
pendent of each other, and the density of the observables
is then a convolution of Gaussian and Poisson functions.
Egtimation under these conditions should be tried.

The random phase in the argument of the sine function
represented both target and turbulence. Going beyond the
application of wavefront correction systems, it may be
desirable to distinguish target and noise induced phases.
This is estimation in the presence of unwanted parameters
and should also be considered.

The basic assumption of the analyses presented in this

paper was the time invariance of the phase in the measurement

interval. Although the staircase approximation to the phase

process may be suitable for slowly varying fields, it
requires an update of the covariance matrix in each inter-

val. A procedure should be tried for which 0(t) is time-

dependent throughout the measurement, thus freeing the esti-

mation problem from the requirement of short observation
intervals. This could be done by homodyning the detector

gignal and filtering the frequency domain components with a

low pass filter. The output signal would then have the form
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r(t) = B2 sino(e) + 2 n, (t) (7-2)

2 /2
where B is a gain factor given by the amplitude of the mix-
ing signal, and nc(t) is filtered white Gaussian noise.

This waveform can now be used in Egq. (3-15) to obtain

Ab

r., = > 51n6j + n. . (7-3)

A
/2 3
The signal has now been quantized and is in a suitable form
for recursive parameter estimation (Ref 2:319).

The joint processing algorithms of Egs. (6-23) and
(6—47) were derived using the assumption of independent
detector noise processes. Development of an algorithm to
include the case of spatially correlated noise should also
be considered. Finally, the algorithm of Ea. (6-47) needs
to be worked out to an implementable form, and tested
through a performance evolution by means of Monte Carlo

simulation.
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